CPLM 1.0 - Compendium of Protein Lysine Modification
TagContent
CPLM ID CPLM-004154
UniProt Accession
Genbank Protein ID
Genbank Nucleotide ID
Protein Name
 Elongation factor 2 
Protein Synonyms/Alias
 EF-2 
Gene Name
 EEF2 
Gene Synonyms/Alias
 EF2 
Created Date
 July 27, 2013 
Organism
 Homo sapiens (Human) 
NCBI Taxa ID
 9606 
Lysine Modification
Position
Peptide
Type
References
32IAHVDHGKSTLTDSLubiquitination[1, 2, 3, 4]
42LTDSLVCKAGIIASAacetylation[4]
42LTDSLVCKAGIIASAubiquitination[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
90ENDLNFIKQSKDGAGubiquitination[3, 7, 12]
152QAIAERIKPVLMMNKubiquitination[1, 3, 7]
159KPVLMMNKMDRALLEubiquitination[1, 3, 6, 7, 11, 12]
235FAEMYVAKFAAKGEGacetylation[13, 14, 15]
235FAEMYVAKFAAKGEGubiquitination[1, 3, 6, 7, 11]
239YVAKFAAKGEGQLGPacetylation[4, 13]
239YVAKFAAKGEGQLGPubiquitination[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 16]
251LGPAERAKKVEDMMKubiquitination[3]
252GPAERAKKVEDMMKKacetylation[4]
252GPAERAKKVEDMMKKubiquitination[3]
258KKVEDMMKKLWGDRYacetylation[4]
258KKVEDMMKKLWGDRYubiquitination[3]
259KVEDMMKKLWGDRYFubiquitination[3]
272YFDPANGKFSKSATSacetylation[4, 13, 14, 15]
272YFDPANGKFSKSATSubiquitination[1, 2, 3, 4, 6, 7, 9, 10, 11, 12]
275PANGKFSKSATSPEGacetylation[4, 13, 14]
275PANGKFSKSATSPEGubiquitination[1, 2, 3, 4, 6, 7, 9, 11, 12, 16]
283SATSPEGKKLPRTFCubiquitination[3, 7]
284ATSPEGKKLPRTFCQubiquitination[3]
308FDAIMNFKKEETAKLacetylation[4, 15]
308FDAIMNFKKEETAKLubiquitination[1, 3, 6, 7, 10, 11, 12]
309DAIMNFKKEETAKLIubiquitination[3]
314FKKEETAKLIEKLDIacetylation[4, 14, 15]
314FKKEETAKLIEKLDIubiquitination[3, 4, 7]
318ETAKLIEKLDIKLDSacetylation[4, 13, 14, 15]
318ETAKLIEKLDIKLDSubiquitination[3, 4, 6, 10, 11, 12]
322LIEKLDIKLDSEDKDacetylation[14]
322LIEKLDIKLDSEDKDubiquitination[1, 7, 12]
328IKLDSEDKDKEGKPLacetylation[15]
328IKLDSEDKDKEGKPLubiquitination[12]
333EDKDKEGKPLLKAVMubiquitination[1, 11, 17]
337KEGKPLLKAVMRRWLacetylation[15]
337KEGKPLLKAVMRRWLubiquitination[1, 6, 11]
386DEAAMGIKSCDPKGPubiquitination[1, 2, 3, 4, 7, 8]
391GIKSCDPKGPLMMYIubiquitination[2, 3, 4]
400PLMMYISKMVPTSDKubiquitination[1, 2, 3, 7, 12]
407KMVPTSDKGRFYAFGacetylation[4]
407KMVPTSDKGRFYAFGmethylation[18]
407KMVPTSDKGRFYAFGubiquitination[3, 4, 10]
426GLVSTGLKVRIMGPNubiquitination[1, 3, 4, 6, 7, 8, 10, 11, 12]
438GPNYTPGKKEDLYLKubiquitination[3, 7, 12]
439PNYTPGKKEDLYLKPubiquitination[1, 3, 4, 7, 12]
445KKEDLYLKPIQRTILacetylation[4, 13, 14, 15, 19]
445KKEDLYLKPIQRTILubiquitination[1, 3, 4, 6, 7, 10, 11, 12]
481GVDQFLVKTGTITTFubiquitination[3, 7]
498AHNMRVMKFSVSPVVubiquitination[1, 2, 3, 4, 6, 7, 10, 11, 12]
512VRVAVEAKNPADLPKacetylation[15]
512VRVAVEAKNPADLPKubiquitination[1, 2, 3, 4, 7, 12, 16]
525PKLVEGLKRLAKSDPubiquitination[3, 4, 7]
571DHACIPIKKSDPVVSubiquitination[1, 2, 3, 4, 7, 9]
572HACIPIKKSDPVVSYubiquitination[1, 3, 4, 7, 9]
594SNVLCLSKSPNKHNRmethylation[20]
594SNVLCLSKSPNKHNRubiquitination[3, 4, 6, 11]
605KHNRLYMKARPFPDGubiquitination[2, 3, 12]
619GLAEDIDKGEVSARQubiquitination[3]
638RARYLAEKYEWDVAEacetylation[15]
638RARYLAEKYEWDVAEubiquitination[1, 2, 3, 4, 6, 7, 9, 10, 11, 12]
648WDVAEARKIWCFGPDubiquitination[1, 2, 3, 4, 6, 11]
676VQYLNEIKDSVVAGFubiquitination[3, 7, 12]
688AGFQWATKEGALCEEubiquitination[1, 7]
766IYGVLNRKRGHVFEEubiquitination[3, 12]
785GTPMFVVKAYLPVNEubiquitination[1]
845TRKRKGLKEGIPALDubiquitination[1, 2, 3, 4, 5, 6, 7, 11, 12, 17]
857ALDNFLDKL******acetylation[13]
857ALDNFLDKL******ubiquitination[3, 7, 12]
Reference
 [1] Global identification of modular cullin-RING ligase substrates.
 Emanuele MJ, Elia AE, Xu Q, Thoma CR, Izhar L, Leng Y, Guo A, Chen YN, Rush J, Hsu PW, Yen HC, Elledge SJ.
 Cell. 2011 Oct 14;147(2):459-74. [PMID: 21963094]
 [2] Methods for quantification of in vivo changes in protein ubiquitination following proteasome and deubiquitinase inhibition.
 Udeshi ND, Mani DR, Eisenhaure T, Mertins P, Jaffe JD, Clauser KR, Hacohen N, Carr SA.
 Mol Cell Proteomics. 2012 May;11(5):148-59. [PMID: 22505724]
 [3] Refined preparation and use of anti-diglycine remnant (K-ε-GG) antibody enables routine quantification of 10,000s of ubiquitination sites in single proteomics experiments.
 Udeshi ND, Svinkina T, Mertins P, Kuhn E, Mani DR, Qiao JW, Carr SA.
 Mol Cell Proteomics. 2013 Mar;12(3):825-31. [PMID: 23266961]
 [4] Integrated proteomic analysis of post-translational modifications by serial enrichment.
 Mertins P, Qiao JW, Patel J, Udeshi ND, Clauser KR, Mani DR, Burgess MW, Gillette MA, Jaffe JD, Carr SA.
 Nat Methods. 2013 Jul;10(7):634-7. [PMID: 23749302]
 [5] Global analysis of lysine ubiquitination by ubiquitin remnant immunoaffinity profiling.
 Xu G, Paige JS, Jaffrey SR.
 Nat Biotechnol. 2010 Aug;28(8):868-73. [PMID: 20639865]
 [6] A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles.
 Wagner SA, Beli P, Weinert BT, Nielsen ML, Cox J, Mann M, Choudhary C.
 Mol Cell Proteomics. 2011 Oct;10(10):M111.013284. [PMID: 21890473]
 [7] Systematic and quantitative assessment of the ubiquitin-modified proteome.
 Kim W, Bennett EJ, Huttlin EL, Guo A, Li J, Possemato A, Sowa ME, Rad R, Rush J, Comb MJ, Harper JW, Gygi SP.
 Mol Cell. 2011 Oct 21;44(2):325-40. [PMID: 21906983]
 [8] Ubiquitin ligase substrate identification through quantitative proteomics at both the protein and peptide levels.
 Lee KA, Hammerle LP, Andrews PS, Stokes MP, Mustelin T, Silva JC, Black RA, Doedens JR.
 J Biol Chem. 2011 Dec 2;286(48):41530-8. [PMID: 21987572]
 [9] Proteome-wide identification of ubiquitylation sites by conjugation of engineered lysine-less ubiquitin.
 Oshikawa K, Matsumoto M, Oyamada K, Nakayama KI.
 J Proteome Res. 2012 Feb 3;11(2):796-807. [PMID: 22053931]
 [10] Systems-wide analysis of ubiquitylation dynamics reveals a key role for PAF15 ubiquitylation in DNA-damage bypass.
 Povlsen LK, Beli P, Wagner SA, Poulsen SL, Sylvestersen KB, Poulsen JW, Nielsen ML, Bekker-Jensen S, Mailand N, Choudhary C.
 Nat Cell Biol. 2012 Oct;14(10):1089-98. [PMID: 23000965]
 [11] hCKSAAP_UbSite: improved prediction of human ubiquitination sites by exploiting amino acid pattern and properties.
 Chen Z, Zhou Y, Song J, Zhang Z.
 Biochim Biophys Acta. 2013 Aug;1834(8):1461-7. [PMID: 23603789]
 [12] Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization.
 Sarraf SA, Raman M, Guarani-Pereira V, Sowa ME, Huttlin EL, Gygi SP, Harper JW.
 Nature. 2013 Apr 18;496(7445):372-6. [PMID: 23503661]
 [13] Lysine acetylation targets protein complexes and co-regulates major cellular functions.
 Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M.
 Science. 2009 Aug 14;325(5942):834-40. [PMID: 19608861]
 [14] Proteomic investigations reveal a role for RNA processing factor THRAP3 in the DNA damage response.
 Beli P, Lukashchuk N, Wagner SA, Weinert BT, Olsen JV, Baskcomb L, Mann M, Jackson SP, Choudhary C.
 Mol Cell. 2012 Apr 27;46(2):212-25. [PMID: 22424773]
 [15] Proteomic investigations of lysine acetylation identify diverse substrates of mitochondrial deacetylase sirt3.
 Sol EM, Wagner SA, Weinert BT, Kumar A, Kim HS, Deng CX, Choudhary C.
 PLoS One. 2012;7(12):e50545. [PMID: 23236377]
 [16] A data set of human endogenous protein ubiquitination sites.
 Shi Y, Chan DW, Jung SY, Malovannaya A, Wang Y, Qin J.
 Mol Cell Proteomics. 2011 May;10(5):M110.002089. [PMID: 20972266]
 [17] Mass spectrometric analysis of lysine ubiquitylation reveals promiscuity at site level.
 Danielsen JM, Sylvestersen KB, Bekker-Jensen S, Szklarczyk D, Poulsen JW, Horn H, Jensen LJ, Mailand N, Nielsen ML.
 Mol Cell Proteomics. 2011 Mar;10(3):M110.003590. [PMID: 21139048]
 [18] Mass spectrometry-based identification and characterisation of lysine and arginine methylation in the human proteome.
 Bremang M, Cuomo A, Agresta AM, Stugiewicz M, Spadotto V, Bonaldi T.
 Mol Biosyst. 2013 Jul 30;9(9):2231-47. [PMID: 23748837]
 [19] Regulation of cellular metabolism by protein lysine acetylation.
 Zhao S, Xu W, Jiang W, Yu W, Lin Y, Zhang T, Yao J, Zhou L, Zeng Y, Li H, Li Y, Shi J, An W, Hancock SM, He F, Qin L, Chin J, Yang P, Chen X, Lei Q, Xiong Y, Guan KL.
 Science. 2010 Feb 19;327(5968):1000-4. [PMID: 20167786]
 [20] A general molecular affinity strategy for global detection and proteomic analysis of lysine methylation.
 Moore KE, Carlson SM, Camp ND, Cheung P, James RG, Chua KF, Wolf-Yadlin A, Gozani O.
 Mol Cell. 2013 May 9;50(3):444-56. [PMID: 23583077
Functional Description
 Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post- translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome. 
Sequence Annotation
 NP_BIND 26 33 GTP (By similarity).
 NP_BIND 104 108 GTP (By similarity).
 NP_BIND 158 161 GTP (By similarity).
 MOD_RES 54 54 Phosphothreonine.
 MOD_RES 57 57 Phosphothreonine.
 MOD_RES 59 59 Phosphothreonine.
 MOD_RES 235 235 N6-acetyllysine.
 MOD_RES 239 239 N6-acetyllysine.
 MOD_RES 272 272 N6-acetyllysine.
 MOD_RES 275 275 N6-acetyllysine.
 MOD_RES 435 435 Phosphothreonine.
 MOD_RES 445 445 N6-acetyllysine.
 MOD_RES 502 502 Phosphoserine.
 MOD_RES 715 715 Diphthamide.  
Keyword
 3D-structure; Acetylation; Complete proteome; Cytoplasm; Direct protein sequencing; Elongation factor; GTP-binding; Nucleotide-binding; Phosphoprotein; Protein biosynthesis; Reference proteome; Ubl conjugation. 
Sequence Source
 UniProt (SWISSPROT/TrEMBL); GenBank; EMBL 
Protein Length
 858 AA 
Protein Sequence
MVNFTVDQIR AIMDKKANIR NMSVIAHVDH GKSTLTDSLV CKAGIIASAR AGETRFTDTR 60
KDEQERCITI KSTAISLFYE LSENDLNFIK QSKDGAGFLI NLIDSPGHVD FSSEVTAALR 120
VTDGALVVVD CVSGVCVQTE TVLRQAIAER IKPVLMMNKM DRALLELQLE PEELYQTFQR 180
IVENVNVIIS TYGEGESGPM GNIMIDPVLG TVGFGSGLHG WAFTLKQFAE MYVAKFAAKG 240
EGQLGPAERA KKVEDMMKKL WGDRYFDPAN GKFSKSATSP EGKKLPRTFC QLILDPIFKV 300
FDAIMNFKKE ETAKLIEKLD IKLDSEDKDK EGKPLLKAVM RRWLPAGDAL LQMITIHLPS 360
PVTAQKYRCE LLYEGPPDDE AAMGIKSCDP KGPLMMYISK MVPTSDKGRF YAFGRVFSGL 420
VSTGLKVRIM GPNYTPGKKE DLYLKPIQRT ILMMGRYVEP IEDVPCGNIV GLVGVDQFLV 480
KTGTITTFEH AHNMRVMKFS VSPVVRVAVE AKNPADLPKL VEGLKRLAKS DPMVQCIIEE 540
SGEHIIAGAG ELHLEICLKD LEEDHACIPI KKSDPVVSYR ETVSEESNVL CLSKSPNKHN 600
RLYMKARPFP DGLAEDIDKG EVSARQELKQ RARYLAEKYE WDVAEARKIW CFGPDGTGPN 660
ILTDITKGVQ YLNEIKDSVV AGFQWATKEG ALCEENMRGV RFDVHDVTLH ADAIHRGGGQ 720
IIPTARRCLY ASVLTAQPRL MEPIYLVEIQ CPEQVVGGIY GVLNRKRGHV FEESQVAGTP 780
MFVVKAYLPV NESFGFTADL RSNTGGQAFP QCVFDHWQIL PGDPFDNSSR PSQVVAETRK 840
RKGLKEGIPA LDNFLDKL 858 
Gene Ontology
 GO:0005829; C:cytosol; TAS:Reactome.
 GO:0005844; C:polysome; IEA:Compara.
 GO:0030529; C:ribonucleoprotein complex; IDA:MGI.
 GO:0005525; F:GTP binding; IEA:UniProtKB-KW.
 GO:0003924; F:GTPase activity; IEA:Compara.
 GO:0003746; F:translation elongation factor activity; IEA:UniProtKB-KW.
 GO:0006414; P:translational elongation; TAS:Reactome. 
Interpro
 IPR000795; EF_GTP-bd_dom.
 IPR009022; EFG_III-V.
 IPR000640; EFG_V.
 IPR027417; P-loop_NTPase.
 IPR020568; Ribosomal_S5_D2-typ_fold.
 IPR014721; Ribosomal_S5_D2-typ_fold_subgr.
 IPR005225; Small_GTP-bd_dom.
 IPR005517; Transl_elong_EFG/EF2_IV.
 IPR004161; Transl_elong_EFTu/EF1A_2.
 IPR009000; Transl_elong_init/rib_B-barrel. 
Pfam
 PF00679; EFG_C
 PF03764; EFG_IV
 PF00009; GTP_EFTU
 PF03144; GTP_EFTU_D2 
SMART
 SM00838; EFG_C
 SM00889; EFG_IV 
PROSITE
 PS00301; EFACTOR_GTP 
PRINTS
 PR00315; ELONGATNFCT.