CPLM 1.0 - Compendium of Protein Lysine Modification
TagContent
CPLM ID CPLM-009036
UniProt Accession
Genbank Protein ID
Genbank Nucleotide ID
Protein Name
 ATP synthase subunit beta, mitochondrial 
Protein Synonyms/Alias
  
Gene Name
 Atp5b 
Gene Synonyms/Alias
  
Created Date
 July 27, 2013 
Organism
 Mus musculus (Mouse) 
NCBI Taxa ID
 10090 
Lysine Modification
Position
Peptide
Type
References
124EGLVRGQKVLDSGAPacetylation[1, 2, 3, 4, 5, 6, 7]
124EGLVRGQKVLDSGAPsuccinylation[6]
124EGLVRGQKVLDSGAPsuccinylation[6]
124EGLVRGQKVLDSGAPubiquitination[8]
133LDSGAPIKIPVGPETacetylation[1, 2, 3, 4, 5, 6, 7, 9, 10, 11]
133LDSGAPIKIPVGPETsuccinylation[6]
133LDSGAPIKIPVGPETsuccinylation[6]
133LDSGAPIKIPVGPETubiquitination[8]
159IDERGPIKTKQFAPIacetylation[1, 3, 7, 11]
159IDERGPIKTKQFAPIubiquitination[8]
161ERGPIKTKQFAPIHAacetylation[1, 3, 5, 6, 7]
161ERGPIKTKQFAPIHAsuccinylation[6]
198DLLAPYAKGGKIGLFacetylation[1, 3, 5, 6, 7, 11]
198DLLAPYAKGGKIGLFsuccinylation[6]
198DLLAPYAKGGKIGLFubiquitination[8]
259ESGVINLKDATSKVAacetylation[1, 2, 3, 4, 5, 6, 7, 9, 11]
259ESGVINLKDATSKVAsuccinylation[6]
259ESGVINLKDATSKVAubiquitination[8]
264NLKDATSKVALVYGQacetylation[1, 2, 3, 5, 6, 7]
264NLKDATSKVALVYGQsuccinylation[6]
264NLKDATSKVALVYGQubiquitination[8]
350QERITTTKKGSITSVacetylation[3, 7]
426DVARGVQKILQDYKSacetylation[2, 3, 5, 7]
426DVARGVQKILQDYKSubiquitination[8]
432QKILQDYKSLQDIIAacetylation[7]
480VFTGHMGKLVPLKETacetylation[3, 5, 7]
485MGKLVPLKETIKGFQacetylation[3, 5, 6, 7, 11]
485MGKLVPLKETIKGFQsuccinylation[6]
485MGKLVPLKETIKGFQubiquitination[8]
522EAVAKADKLAEEHGSacetylation[1, 3, 4, 5, 6, 7, 9]
522EAVAKADKLAEEHGSsuccinylation[6]
Reference
 [1] Quantitative assessment of the impact of the gut microbiota on lysine epsilon-acetylation of host proteins using gnotobiotic mice.
 Simon GM, Cheng J, Gordon JI.
 Proc Natl Acad Sci U S A. 2012 Jul 10;109(28):11133-8. [PMID: 22733758]
 [2] Quantitative acetylome analysis reveals the roles of SIRT1 in regulating diverse substrates and cellular pathways.
 Chen Y, Zhao W, Yang JS, Cheng Z, Luo H, Lu Z, Tan M, Gu W, Zhao Y.
 Mol Cell Proteomics. 2012 Oct;11(10):1048-62. [PMID: 22826441]
 [3] Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome.
 Hebert AS, Dittenhafer-Reed KE, Yu W, Bailey DJ, Selen ES, Boersma MD, Carson JJ, Tonelli M, Balloon AJ, Higbee AJ, Westphall MS, Pagliarini DJ, Prolla TA, Assadi-Porter F, Roy S, Denu JM, Coon JJ.
 Mol Cell. 2013 Jan 10;49(1):186-99. [PMID: 23201123]
 [4] Circadian acetylome reveals regulation of mitochondrial metabolic pathways.
 Masri S, Patel VR, Eckel-Mahan KL, Peleg S, Forne I, Ladurner AG, Baldi P, Imhof A, Sassone-Corsi P.
 Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):3339-44. [PMID: 23341599]
 [5] Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways.
 Rardin MJ, Newman JC, Held JM, Cusack MP, Sorensen DJ, Li B, Schilling B, Mooney SD, Kahn CR, Verdin E, Gibson BW.
 Proc Natl Acad Sci U S A. 2013 Apr 16;110(16):6601-6. [PMID: 23576753]
 [6] SIRT5-Mediated Lysine Desuccinylation Impacts Diverse Metabolic Pathways.
 Park J, Chen Y, Tishkoff DX, Peng C, Tan M, Dai L, Xie Z, Zhang Y, Zwaans BM, Skinner ME, Lombard DB, Zhao Y.
 Mol Cell. 2013 Jun 27;50(6):919-30. [PMID: 23806337]
 [7] Quantification of mitochondrial acetylation dynamics highlights prominent sites of metabolic regulation.
 Still AJ, Floyd BJ, Hebert AS, Bingman CA, Carson JJ, Gunderson DR, Dolan BK, Grimsrud PA, Dittenhafer-Reed KE, Stapleton DS, Keller MP, Westphall MS, Denu JM, Attie AD, Coon JJ, Pagliarini DJ.
 J Biol Chem. 2013 Jul 17;. [PMID: 23864654]
 [8] Proteomic analyses reveal divergent ubiquitylation site patterns in murine tissues.
 Wagner SA, Beli P, Weinert BT, Schölz C, Kelstrup CD, Young C, Nielsen ML, Olsen JV, Brakebusch C, Choudhary C.
 Mol Cell Proteomics. 2012 Dec;11(12):1578-85. [PMID: 22790023]
 [9] Substrate and functional diversity of lysine acetylation revealed by a proteomics survey.
 Kim SC, Sprung R, Chen Y, Xu Y, Ball H, Pei J, Cheng T, Kho Y, Xiao H, Xiao L, Grishin NV, White M, Yang XJ, Zhao Y.
 Mol Cell. 2006 Aug;23(4):607-18. [PMID: 16916647]
 [10] Mitochondrial acetylome analysis in a mouse model of alcohol-induced liver injury utilizing SIRT3 knockout mice.
 Fritz KS, Galligan JJ, Hirschey MD, Verdin E, Petersen DR.
 J Proteome Res. 2012 Mar 2;11(3):1633-43. [PMID: 22309199]
 [11] Proteomic investigations of lysine acetylation identify diverse substrates of mitochondrial deacetylase sirt3.
 Sol EM, Wagner SA, Weinert BT, Kumar A, Kim HS, Deng CX, Choudhary C.
 PLoS One. 2012;7(12):e50545. [PMID: 23236377
Functional Description
 Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. Subunits alpha and beta form the catalytic core in F(1). Rotation of the central stalk against the surrounding alpha(3)beta(3) subunits leads to hydrolysis of ATP in three separate catalytic sites on the beta subunits. 
Sequence Annotation
 NP_BIND 206 213 ATP (By similarity).
 MOD_RES 133 133 N6-acetyllysine.
 MOD_RES 198 198 N6-acetyllysine (By similarity).
 MOD_RES 259 259 N6-acetyllysine.
 MOD_RES 426 426 N6-acetyllysine (By similarity).
 MOD_RES 522 522 N6-acetyllysine.
 MOD_RES 529 529 Phosphoserine.  
Keyword
 Acetylation; ATP synthesis; ATP-binding; CF(1); Complete proteome; Direct protein sequencing; Hydrogen ion transport; Hydrolase; Ion transport; Membrane; Mitochondrion; Mitochondrion inner membrane; Nucleotide-binding; Phosphoprotein; Reference proteome; Transit peptide; Transport. 
Sequence Source
 UniProt (SWISSPROT/TrEMBL); GenBank; EMBL 
Protein Length
 529 AA 
Protein Sequence
MLSLVGRVAS ASASGALRGL SPSAALPQAQ LLLRAAPAGV HPARDYAAQA SAAPKAGTAT 60
GRIVAVIGAV VDVQFDEGLP PILNALEVQG RDSRLVLEVA QHLGESTVRT IAMDGTEGLV 120
RGQKVLDSGA PIKIPVGPET LGRIMNVIGE PIDERGPIKT KQFAPIHAEA PEFIEMSVEQ 180
EILVTGIKVV DLLAPYAKGG KIGLFGGAGV GKTVLIMELI NNVAKAHGGY SVFAGVGERT 240
REGNDLYHEM IESGVINLKD ATSKVALVYG QMNEPPGARA RVALTGLTVA EYFRDQEGQD 300
VLLFIDNIFR FTQAGSEVSA LLGRIPSAVG YQPTLATDMG TMQERITTTK KGSITSVQAI 360
YVPADDLTDP APATTFAHLD ATTVLSRAIA ELGIYPAVDP LDSTSRIMDP NIVGNEHYDV 420
ARGVQKILQD YKSLQDIIAI LGMDELSEED KLTVSRARKI QRFLSQPFQV AEVFTGHMGK 480
LVPLKETIKG FQQILAGEYD HLPEQAFYMV GPIEEAVAKA DKLAEEHGS 529 
Gene Ontology
 GO:0009986; C:cell surface; IEA:Compara.
 GO:0042645; C:mitochondrial nucleoid; IEA:Compara.
 GO:0005753; C:mitochondrial proton-transporting ATP synthase complex; ISS:UniProtKB.
 GO:0005886; C:plasma membrane; IEA:Compara.
 GO:0045261; C:proton-transporting ATP synthase complex, catalytic core F(1); IEA:UniProtKB-KW.
 GO:0005524; F:ATP binding; IEA:UniProtKB-KW.
 GO:0046933; F:proton-transporting ATP synthase activity, rotational mechanism; IEA:InterPro.
 GO:0046961; F:proton-transporting ATPase activity, rotational mechanism; IEA:Compara.
 GO:0001525; P:angiogenesis; IEA:Compara.
 GO:0015991; P:ATP hydrolysis coupled proton transport; IEA:InterPro.
 GO:0015986; P:ATP synthesis coupled proton transport; IEA:InterPro.
 GO:0006629; P:lipid metabolic process; IMP:MGI.
 GO:0006933; P:negative regulation of cell adhesion involved in substrate-bound cell migration; IMP:MGI.
 GO:0051453; P:regulation of intracellular pH; IEA:Compara. 
Interpro
 IPR003593; AAA+_ATPase.
 IPR020003; ATPase_a/bsu_AS.
 IPR004100; ATPase_a/bsu_N.
 IPR005722; ATPase_F1-cplx_bsu.
 IPR000793; ATPase_F1/V1/A1-cplx_a/bsu_C.
 IPR000194; ATPase_F1/V1/A1_a/bsu_nucl-bd.
 IPR024034; ATPase_F1_bsu/V1_C.
 IPR027417; P-loop_NTPase. 
Pfam
 PF00006; ATP-synt_ab
 PF00306; ATP-synt_ab_C
 PF02874; ATP-synt_ab_N 
SMART
 SM00382; AAA 
PROSITE
 PS00152; ATPASE_ALPHA_BETA 
PRINTS