CPLM 1.0 - Compendium of Protein Lysine Modification
TagContent
CPLM ID CPLM-008096
UniProt Accession
Genbank Protein ID
Genbank Nucleotide ID
Protein Name
 ADP/ATP translocase 1 
Protein Synonyms/Alias
 ADP,ATP carrier protein 1; ADP,ATP carrier protein, heart/skeletal muscle isoform T1; Adenine nucleotide translocator 1; ANT 1; Solute carrier family 25 member 4; mANC1 
Gene Name
 Slc25a4 
Gene Synonyms/Alias
 Anc1; Ant1 
Created Date
 July 27, 2013 
Organism
 Mus musculus (Mouse) 
NCBI Taxa ID
 10090 
Lysine Modification
Position
Peptide
Type
References
10DQALSFLKDFLAGGIubiquitination[1, 2]
23GIAAAVSKTAVAPIEacetylation[3, 4, 5, 6, 7, 8]
23GIAAAVSKTAVAPIEsuccinylation[7]
23GIAAAVSKTAVAPIEubiquitination[2]
33VAPIERVKLLLQVQHacetylation[3, 9]
33VAPIERVKLLLQVQHubiquitination[2]
43LQVQHASKQISAEKQacetylation[4, 7]
43LQVQHASKQISAEKQsuccinylation[7]
43LQVQHASKQISAEKQubiquitination[2]
52ISAEKQYKGIIDCVVacetylation[9]
63DCVVRIPKEQGFLSFacetylation[3, 4, 6, 7]
63DCVVRIPKEQGFLSFsuccinylation[7]
63DCVVRIPKEQGFLSFubiquitination[2]
92QALNFAFKDKYKQIFacetylation[3, 4, 6, 7, 8, 9, 10, 11, 12, 13]
92QALNFAFKDKYKQIFphosphoglycerylation[14]
92QALNFAFKDKYKQIFsuccinylation[7]
92QALNFAFKDKYKQIFubiquitination[2]
94LNFAFKDKYKQIFLGacetylation[9]
96FAFKDKYKQIFLGGVacetylation[3, 4, 6, 7, 13]
96FAFKDKYKQIFLGGVphosphoglycerylation[14]
96FAFKDKYKQIFLGGVubiquitination[2]
147RLAADVGKGSSQREFacetylation[7, 8]
147RLAADVGKGSSQREFsuccinylation[7]
147RLAADVGKGSSQREFubiquitination[2]
163GLGDCLTKIFKSDGLacetylation[3, 4]
166DCLTKIFKSDGLKGLacetylation[3, 4, 6, 7]
166DCLTKIFKSDGLKGLsuccinylation[7]
166DCLTKIFKSDGLKGLubiquitination[2]
199FGVYDTAKGMLPDPKacetylation[4, 6]
245MMMQSGRKGADIMYTacetylation[7]
245MMMQSGRKGADIMYTsuccinylation[7]
263DCWRKIAKDEGANAFacetylation[3, 4, 7]
263DCWRKIAKDEGANAFsuccinylation[7]
263DCWRKIAKDEGANAFubiquitination[2]
272EGANAFFKGAWSNVLacetylation[3, 4, 7, 8, 9, 11, 12]
272EGANAFFKGAWSNVLsuccinylation[7]
272EGANAFFKGAWSNVLsuccinylation[7]
272EGANAFFKGAWSNVLubiquitination[2]
Reference
 [1] A proteomics approach to identify the ubiquitinated proteins in mouse heart.
 Jeon HB, Choi ES, Yoon JH, Hwang JH, Chang JW, Lee EK, Choi HW, Park ZY, Yoo YJ.
 Biochem Biophys Res Commun. 2007 Jun 8;357(3):731-6. [PMID: 17451654]
 [2] Proteomic analyses reveal divergent ubiquitylation site patterns in murine tissues.
 Wagner SA, Beli P, Weinert BT, Schölz C, Kelstrup CD, Young C, Nielsen ML, Olsen JV, Brakebusch C, Choudhary C.
 Mol Cell Proteomics. 2012 Dec;11(12):1578-85. [PMID: 22790023]
 [3] Quantitative assessment of the impact of the gut microbiota on lysine epsilon-acetylation of host proteins using gnotobiotic mice.
 Simon GM, Cheng J, Gordon JI.
 Proc Natl Acad Sci U S A. 2012 Jul 10;109(28):11133-8. [PMID: 22733758]
 [4] Quantitative acetylome analysis reveals the roles of SIRT1 in regulating diverse substrates and cellular pathways.
 Chen Y, Zhao W, Yang JS, Cheng Z, Luo H, Lu Z, Tan M, Gu W, Zhao Y.
 Mol Cell Proteomics. 2012 Oct;11(10):1048-62. [PMID: 22826441]
 [5] Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome.
 Hebert AS, Dittenhafer-Reed KE, Yu W, Bailey DJ, Selen ES, Boersma MD, Carson JJ, Tonelli M, Balloon AJ, Higbee AJ, Westphall MS, Pagliarini DJ, Prolla TA, Assadi-Porter F, Roy S, Denu JM, Coon JJ.
 Mol Cell. 2013 Jan 10;49(1):186-99. [PMID: 23201123]
 [6] Proteomic investigations of lysine acetylation identify diverse substrates of mitochondrial deacetylase sirt3.
 Sol EM, Wagner SA, Weinert BT, Kumar A, Kim HS, Deng CX, Choudhary C.
 PLoS One. 2012;7(12):e50545. [PMID: 23236377]
 [7] SIRT5-Mediated Lysine Desuccinylation Impacts Diverse Metabolic Pathways.
 Park J, Chen Y, Tishkoff DX, Peng C, Tan M, Dai L, Xie Z, Zhang Y, Zwaans BM, Skinner ME, Lombard DB, Zhao Y.
 Mol Cell. 2013 Jun 27;50(6):919-30. [PMID: 23806337]
 [8] Quantification of mitochondrial acetylation dynamics highlights prominent sites of metabolic regulation.
 Still AJ, Floyd BJ, Hebert AS, Bingman CA, Carson JJ, Gunderson DR, Dolan BK, Grimsrud PA, Dittenhafer-Reed KE, Stapleton DS, Keller MP, Westphall MS, Denu JM, Attie AD, Coon JJ, Pagliarini DJ.
 J Biol Chem. 2013 Jul 17;. [PMID: 23864654]
 [9] Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways.
 Rardin MJ, Newman JC, Held JM, Cusack MP, Sorensen DJ, Li B, Schilling B, Mooney SD, Kahn CR, Verdin E, Gibson BW.
 Proc Natl Acad Sci U S A. 2013 Apr 16;110(16):6601-6. [PMID: 23576753]
 [10] Substrate and functional diversity of lysine acetylation revealed by a proteomics survey.
 Kim SC, Sprung R, Chen Y, Xu Y, Ball H, Pei J, Cheng T, Kho Y, Xiao H, Xiao L, Grishin NV, White M, Yang XJ, Zhao Y.
 Mol Cell. 2006 Aug;23(4):607-18. [PMID: 16916647]
 [11] The fasted/fed mouse metabolic acetylome: N6-acetylation differences suggest acetylation coordinates organ-specific fuel switching.
 Yang L, Vaitheesvaran B, Hartil K, Robinson AJ, Hoopmann MR, Eng JK, Kurland IJ, Bruce JE.
 J Proteome Res. 2011 Sep 2;10(9):4134-49. [PMID: 21728379]
 [12] Mitochondrial acetylome analysis in a mouse model of alcohol-induced liver injury utilizing SIRT3 knockout mice.
 Fritz KS, Galligan JJ, Hirschey MD, Verdin E, Petersen DR.
 J Proteome Res. 2012 Mar 2;11(3):1633-43. [PMID: 22309199]
 [13] Circadian acetylome reveals regulation of mitochondrial metabolic pathways.
 Masri S, Patel VR, Eckel-Mahan KL, Peleg S, Forne I, Ladurner AG, Baldi P, Imhof A, Sassone-Corsi P.
 Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):3339-44. [PMID: 23341599]
 [14] Functional lysine modification by an intrinsically reactive primary glycolytic metabolite.
 Moellering RE, Cravatt BF.
 Science. 2013 Aug 2;341(6145):549-53. [PMID: 23908237
Functional Description
 Catalyzes the exchange of cytoplasmic ADP with mitochondrial ATP across the mitochondrial inner membrane. 
Sequence Annotation
 REPEAT 6 98 Solcar 1.
 REPEAT 111 201 Solcar 2.
 REPEAT 212 297 Solcar 3.
 MOTIF 235 240 Substrate recognition (By similarity).
 BINDING 80 80 Nucleotide (By similarity).
 MOD_RES 2 2 N-acetylglycine (By similarity).
 MOD_RES 126 126 Phosphothreonine.
 MOD_RES 127 127 Phosphoserine.
 MOD_RES 191 191 Phosphotyrosine.
 MOD_RES 195 195 Phosphotyrosine.
 CROSSLNK 10 10 Glycyl lysine isopeptide (Lys-Gly)  
Keyword
 Acetylation; Complete proteome; Direct protein sequencing; Isopeptide bond; Membrane; Mitochondrion; Mitochondrion inner membrane; Phosphoprotein; Reference proteome; Repeat; Transmembrane; Transmembrane helix; Transport; Ubl conjugation. 
Sequence Source
 UniProt (SWISSPROT/TrEMBL); GenBank; EMBL 
Protein Length
 298 AA 
Protein Sequence
MGDQALSFLK DFLAGGIAAA VSKTAVAPIE RVKLLLQVQH ASKQISAEKQ YKGIIDCVVR 60
IPKEQGFLSF WRGNLANVIR YFPTQALNFA FKDKYKQIFL GGVDRHKQFW RYFAGNLASG 120
GAAGATSLCF VYPLDFARTR LAADVGKGSS QREFNGLGDC LTKIFKSDGL KGLYQGFSVS 180
VQGIIIYRAA YFGVYDTAKG MLPDPKNVHI IVSWMIAQSV TAVAGLVSYP FDTVRRRMMM 240
QSGRKGADIM YTGTLDCWRK IAKDEGANAF FKGAWSNVLR GMGGAFVLVL YDEIKKYV 298 
Gene Ontology
 GO:0016021; C:integral to membrane; IEA:UniProtKB-KW.
 GO:0005743; C:mitochondrial inner membrane; IDA:MGI.
 GO:0005741; C:mitochondrial outer membrane; ISS:MGI.
 GO:0005215; F:transporter activity; IEA:InterPro.
 GO:0008637; P:apoptotic mitochondrial changes; IGI:MGI.
 GO:0060547; P:negative regulation of necrotic cell death; IEA:Compara.
 GO:0055085; P:transmembrane transport; IEA:InterPro. 
Interpro
 IPR002113; Aden_trnslctor.
 IPR002067; Mit_carrier.
 IPR018108; Mitochondrial_sb/sol_carrier.
 IPR023395; Mt_carrier_dom. 
Pfam
 PF00153; Mito_carr 
SMART
  
PROSITE
 PS50920; SOLCAR 
PRINTS
 PR00927; ADPTRNSLCASE.
 PR00926; MITOCARRIER.