CPLM 1.0 - Compendium of Protein Lysine Modification
TagContent
CPLM ID CPLM-009452
UniProt Accession
Genbank Protein ID
Genbank Nucleotide ID
Protein Name
 14-3-3 protein epsilon 
Protein Synonyms/Alias
 14-3-3E 
Gene Name
 YWHAE 
Gene Synonyms/Alias
  
Created Date
 July 27, 2013 
Organism
 Homo sapiens (Human) 
NCBI Taxa ID
 9606 
Lysine Modification
Position
Peptide
Type
References
12EDLVYQAKLAEQAERubiquitination[1, 2, 3, 4]
28DEMVESMKKVAGMDVubiquitination[3, 5, 6]
29EMVESMKKVAGMDVEubiquitination[3, 7]
50NLLSVAYKNVIGARRacetylation[8]
50NLLSVAYKNVIGARRubiquitination[1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12]
69IISSIEQKEENKGGEacetylation[8]
69IISSIEQKEENKGGEubiquitination[5, 6, 7]
73IEQKEENKGGEDKLKubiquitination[5, 6]
106DILDVLDKHLIPAANacetylation[13]
106DILDVLDKHLIPAANubiquitination[1, 3, 4, 5, 6, 7, 9, 14, 15]
118AANTGESKVFYYKMKacetylation[8, 15, 16]
118AANTGESKVFYYKMKubiquitination[1, 2, 3, 4, 5, 6, 7, 15]
123ESKVFYYKMKGDYHRacetylation[8, 17]
123ESKVFYYKMKGDYHRubiquitination[1, 2, 3, 4, 5, 6, 12, 15]
125KVFYYKMKGDYHRYLubiquitination[5, 6, 12]
142FATGNDRKEAAENSLubiquitination[1, 2, 3, 4, 5, 6, 7, 12]
153ENSLVAYKAASDIAMubiquitination[5, 6, 7]
196DRACRLAKAAFDDAIubiquitination[1, 2, 4, 5, 6, 7, 9, 11]
244GDGEEQNKEALQDVEubiquitination[4, 5, 6, 7, 10, 14]
Reference
 [1] A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles.
 Wagner SA, Beli P, Weinert BT, Nielsen ML, Cox J, Mann M, Choudhary C.
 Mol Cell Proteomics. 2011 Oct;10(10):M111.013284. [PMID: 21890473]
 [2] Systems-wide analysis of ubiquitylation dynamics reveals a key role for PAF15 ubiquitylation in DNA-damage bypass.
 Povlsen LK, Beli P, Wagner SA, Poulsen SL, Sylvestersen KB, Poulsen JW, Nielsen ML, Bekker-Jensen S, Mailand N, Choudhary C.
 Nat Cell Biol. 2012 Oct;14(10):1089-98. [PMID: 23000965]
 [3] Refined preparation and use of anti-diglycine remnant (K-ε-GG) antibody enables routine quantification of 10,000s of ubiquitination sites in single proteomics experiments.
 Udeshi ND, Svinkina T, Mertins P, Kuhn E, Mani DR, Qiao JW, Carr SA.
 Mol Cell Proteomics. 2013 Mar;12(3):825-31. [PMID: 23266961]
 [4] hCKSAAP_UbSite: improved prediction of human ubiquitination sites by exploiting amino acid pattern and properties.
 Chen Z, Zhou Y, Song J, Zhang Z.
 Biochim Biophys Acta. 2013 Aug;1834(8):1461-7. [PMID: 23603789]
 [5] Systematic and quantitative assessment of the ubiquitin-modified proteome.
 Kim W, Bennett EJ, Huttlin EL, Guo A, Li J, Possemato A, Sowa ME, Rad R, Rush J, Comb MJ, Harper JW, Gygi SP.
 Mol Cell. 2011 Oct 21;44(2):325-40. [PMID: 21906983]
 [6] Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization.
 Sarraf SA, Raman M, Guarani-Pereira V, Sowa ME, Huttlin EL, Gygi SP, Harper JW.
 Nature. 2013 Apr 18;496(7445):372-6. [PMID: 23503661]
 [7] Proteome-wide identification of ubiquitylation sites by conjugation of engineered lysine-less ubiquitin.
 Oshikawa K, Matsumoto M, Oyamada K, Nakayama KI.
 J Proteome Res. 2012 Feb 3;11(2):796-807. [PMID: 22053931]
 [8] Lysine acetylation targets protein complexes and co-regulates major cellular functions.
 Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M.
 Science. 2009 Aug 14;325(5942):834-40. [PMID: 19608861]
 [9] Global analysis of lysine ubiquitination by ubiquitin remnant immunoaffinity profiling.
 Xu G, Paige JS, Jaffrey SR.
 Nat Biotechnol. 2010 Aug;28(8):868-73. [PMID: 20639865]
 [10] Mass spectrometric analysis of lysine ubiquitylation reveals promiscuity at site level.
 Danielsen JM, Sylvestersen KB, Bekker-Jensen S, Szklarczyk D, Poulsen JW, Horn H, Jensen LJ, Mailand N, Nielsen ML.
 Mol Cell Proteomics. 2011 Mar;10(3):M110.003590. [PMID: 21139048]
 [11] Ubiquitin ligase substrate identification through quantitative proteomics at both the protein and peptide levels.
 Lee KA, Hammerle LP, Andrews PS, Stokes MP, Mustelin T, Silva JC, Black RA, Doedens JR.
 J Biol Chem. 2011 Dec 2;286(48):41530-8. [PMID: 21987572]
 [12] Methods for quantification of in vivo changes in protein ubiquitination following proteasome and deubiquitinase inhibition.
 Udeshi ND, Mani DR, Eisenhaure T, Mertins P, Jaffe JD, Clauser KR, Hacohen N, Carr SA.
 Mol Cell Proteomics. 2012 May;11(5):148-59. [PMID: 22505724]
 [13] Monoclonal antibody cocktail as an enrichment tool for acetylome analysis.
 Shaw PG, Chaerkady R, Zhang Z, Davidson NE, Pandey A.
 Anal Chem. 2011 May 15;83(10):3623-6. [PMID: 21466224]
 [14] Global identification of modular cullin-RING ligase substrates.
 Emanuele MJ, Elia AE, Xu Q, Thoma CR, Izhar L, Leng Y, Guo A, Chen YN, Rush J, Hsu PW, Yen HC, Elledge SJ.
 Cell. 2011 Oct 14;147(2):459-74. [PMID: 21963094]
 [15] Integrated proteomic analysis of post-translational modifications by serial enrichment.
 Mertins P, Qiao JW, Patel J, Udeshi ND, Clauser KR, Mani DR, Burgess MW, Gillette MA, Jaffe JD, Carr SA.
 Nat Methods. 2013 Jul;10(7):634-7. [PMID: 23749302]
 [16] Proteomic investigations reveal a role for RNA processing factor THRAP3 in the DNA damage response.
 Beli P, Lukashchuk N, Wagner SA, Weinert BT, Olsen JV, Baskcomb L, Mann M, Jackson SP, Choudhary C.
 Mol Cell. 2012 Apr 27;46(2):212-25. [PMID: 22424773]
 [17] Proteomic investigations of lysine acetylation identify diverse substrates of mitochondrial deacetylase sirt3.
 Sol EM, Wagner SA, Weinert BT, Kumar A, Kim HS, Deng CX, Choudhary C.
 PLoS One. 2012;7(12):e50545. [PMID: 23236377
Functional Description
 Adapter protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways. Binds to a large number of partners, usually by recognition of a phosphoserine or phosphothreonine motif. Binding generally results in the modulation of the activity of the binding partner. 
Sequence Annotation
 MOD_RES 1 1 N-acetylmethionine.
 MOD_RES 50 50 N6-acetyllysine.
 MOD_RES 69 69 N6-acetyllysine.
 MOD_RES 118 118 N6-acetyllysine.
 MOD_RES 123 123 N6-acetyllysine.
 MOD_RES 210 210 Phosphoserine.  
Keyword
 3D-structure; Acetylation; Alternative splicing; Complete proteome; Cytoplasm; Direct protein sequencing; Host-virus interaction; Phosphoprotein; Reference proteome. 
Sequence Source
 UniProt (SWISSPROT/TrEMBL); GenBank; EMBL 
Protein Length
 255 AA 
Protein Sequence
MDDREDLVYQ AKLAEQAERY DEMVESMKKV AGMDVELTVE ERNLLSVAYK NVIGARRASW 60
RIISSIEQKE ENKGGEDKLK MIREYRQMVE TELKLICCDI LDVLDKHLIP AANTGESKVF 120
YYKMKGDYHR YLAEFATGND RKEAAENSLV AYKAASDIAM TELPPTHPIR LGLALNFSVF 180
YYEILNSPDR ACRLAKAAFD DAIAELDTLS EESYKDSTLI MQLLRDNLTL WTSDMQGDGE 240
EQNKEALQDV EDENQ 255 
Gene Ontology
 GO:0030659; C:cytoplasmic vesicle membrane; TAS:Reactome.
 GO:0005829; C:cytosol; TAS:Reactome.
 GO:0005871; C:kinesin complex; IEA:Compara.
 GO:0042470; C:melanosome; IEA:UniProtKB-SubCell.
 GO:0005739; C:mitochondrion; IEA:Compara.
 GO:0016044; P:cellular membrane organization; TAS:Reactome.
 GO:0021987; P:cerebral cortex development; IEA:Compara.
 GO:0000086; P:G2/M transition of mitotic cell cycle; TAS:Reactome.
 GO:0035329; P:hippo signaling cascade; TAS:Reactome.
 GO:0021766; P:hippocampus development; IEA:Compara.
 GO:0097193; P:intrinsic apoptotic signaling pathway; TAS:Reactome.
 GO:0035308; P:negative regulation of protein dephosphorylation; IEA:Compara.
 GO:0001764; P:neuron migration; IEA:Compara.
 GO:0048011; P:neurotrophin TRK receptor signaling pathway; TAS:Reactome.
 GO:1900740; P:positive regulation of protein insertion into mitochondrial membrane involved in apoptotic signaling pathway; TAS:Reactome.
 GO:0006605; P:protein targeting; IEA:Compara.
 GO:0019048; P:virus-host interaction; IEA:UniProtKB-KW. 
Interpro
 IPR000308; 14-3-3.
 IPR023409; 14-3-3_CS.
 IPR023410; 14-3-3_domain. 
Pfam
 PF00244; 14-3-3 
SMART
 SM00101; 14_3_3 
PROSITE
 PS00796; 1433_1
 PS00797; 1433_2 
PRINTS
 PR00305; 1433ZETA.