CPLM 1.0 - Compendium of Protein Lysine Modification
TagContent
CPLM ID CPLM-029381
UniProt Accession
Genbank Protein ID
Genbank Nucleotide ID
Protein Name
 Heat shock cognate 71 kDa protein 
Protein Synonyms/Alias
 cDNA FLJ77848 
Gene Name
 HSPA8 
Gene Synonyms/Alias
  
Created Date
 July 27, 2013 
Organism
 Homo sapiens (Human) 
NCBI Taxa ID
 9606 
Lysine Modification
Position
Peptide
Type
References
10NHFIAEFKRKHKKDIacetylation[1, 2]
10NHFIAEFKRKHKKDIubiquitination[3, 4, 5, 6, 7, 8]
12FIAEFKRKHKKDISEubiquitination[6]
15EFKRKHKKDISENKRubiquitination[9]
21KKDISENKRAVRRLRacetylation[8]
21KKDISENKRAVRRLRubiquitination[3, 5, 9, 10]
83GTLDPVEKALRDAKLacetylation[1, 2, 8]
83GTLDPVEKALRDAKLubiquitination[3, 4, 5, 6, 7, 8, 9]
89EKALRDAKLDKSQIHubiquitination[5, 6, 7, 8, 9, 11]
92LRDAKLDKSQIHDIVacetylation[8]
92LRDAKLDKSQIHDIVubiquitination[3, 5, 6, 7, 8, 9]
109GGSTRIPKIQKLLQDubiquitination[6, 7, 10]
112TRIPKIQKLLQDFFNacetylation[1, 2, 8]
112TRIPKIQKLLQDFFNubiquitination[3, 5, 6, 7, 8, 9, 10]
121LQDFFNGKELNKSINacetylation[2, 8]
121LQDFFNGKELNKSINubiquitination[3, 5, 6, 7, 9]
125FNGKELNKSINPDEAubiquitination[3, 4, 6, 7, 9]
187RNTTIPTKQTQTFTTubiquitination[3, 4, 6, 7, 8, 9, 10]
215EGERAMTKDNNLLGKacetylation[1, 8]
215EGERAMTKDNNLLGKubiquitination[3, 4, 6, 7, 8, 9, 10]
222KDNNLLGKFELTGIPubiquitination[3, 7, 8, 9]
261AVDKSTGKENKITITubiquitination[6, 7, 8, 10]
264KSTGKENKITITNDKubiquitination[6, 7, 8, 9, 10]
271KITITNDKGRLSKEDacetylation[1, 2, 8]
271KITITNDKGRLSKEDubiquitination[3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
276NDKGRLSKEDIERMVacetylation[1, 2, 8]
276NDKGRLSKEDIERMVubiquitination[3, 4, 5, 6, 7, 8, 9, 10, 11]
288RMVQEAEKYKAEDEKacetylation[1, 8]
288RMVQEAEKYKAEDEKubiquitination[3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
290VQEAEKYKAEDEKQRubiquitination[7, 8, 9, 10]
295KYKAEDEKQRDKVSSacetylation[8]
295KYKAEDEKQRDKVSSubiquitination[5, 7, 9, 10]
299EDEKQRDKVSSKNSLubiquitination[5, 10]
303QRDKVSSKNSLESYAubiquitination[3, 6, 7, 8, 9, 10]
314ESYAFNMKATVEDEKubiquitination[4, 7, 9]
321KATVEDEKLQGKINDacetylation[13]
321KATVEDEKLQGKINDmethylation[14]
321KATVEDEKLQGKINDubiquitination[6, 7, 8, 9, 10]
325EDEKLQGKINDEDKQacetylation[13]
325EDEKLQGKINDEDKQmethylation[14]
325EDEKLQGKINDEDKQubiquitination[9]
331GKINDEDKQKILDKCacetylation[13]
331GKINDEDKQKILDKCmethylation[14]
333INDEDKQKILDKCNEacetylation[13]
333INDEDKQKILDKCNEmethylation[14]
337DKQKILDKCNEIINWubiquitination[6, 8, 9]
347EIINWLDKNQTAEKEacetylation[8]
347EIINWLDKNQTAEKEubiquitination[3, 5, 6, 7, 8, 9, 10]
353DKNQTAEKEEFEHQQacetylation[2, 8]
353DKNQTAEKEEFEHQQubiquitination[7, 8, 9, 10]
361EEFEHQQKELEKVCNacetylation[1, 8]
361EEFEHQQKELEKVCNubiquitination[3, 4, 6, 7, 8, 9, 10]
365HQQKELEKVCNPIITacetylation[1, 2, 8]
365HQQKELEKVCNPIITubiquitination[3, 4, 6, 7, 8, 9, 10]
373VCNPIITKLYQSAGGubiquitination[7, 8, 10]
Reference
 [1] Proteomic investigations reveal a role for RNA processing factor THRAP3 in the DNA damage response.
 Beli P, Lukashchuk N, Wagner SA, Weinert BT, Olsen JV, Baskcomb L, Mann M, Jackson SP, Choudhary C.
 Mol Cell. 2012 Apr 27;46(2):212-25. [PMID: 22424773]
 [2] Proteomic investigations of lysine acetylation identify diverse substrates of mitochondrial deacetylase sirt3.
 Sol EM, Wagner SA, Weinert BT, Kumar A, Kim HS, Deng CX, Choudhary C.
 PLoS One. 2012;7(12):e50545. [PMID: 23236377]
 [3] A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles.
 Wagner SA, Beli P, Weinert BT, Nielsen ML, Cox J, Mann M, Choudhary C.
 Mol Cell Proteomics. 2011 Oct;10(10):M111.013284. [PMID: 21890473]
 [4] Proteome-wide identification of ubiquitylation sites by conjugation of engineered lysine-less ubiquitin.
 Oshikawa K, Matsumoto M, Oyamada K, Nakayama KI.
 J Proteome Res. 2012 Feb 3;11(2):796-807. [PMID: 22053931]
 [5] Methods for quantification of in vivo changes in protein ubiquitination following proteasome and deubiquitinase inhibition.
 Udeshi ND, Mani DR, Eisenhaure T, Mertins P, Jaffe JD, Clauser KR, Hacohen N, Carr SA.
 Mol Cell Proteomics. 2012 May;11(5):148-59. [PMID: 22505724]
 [6] Refined preparation and use of anti-diglycine remnant (K-ε-GG) antibody enables routine quantification of 10,000s of ubiquitination sites in single proteomics experiments.
 Udeshi ND, Svinkina T, Mertins P, Kuhn E, Mani DR, Qiao JW, Carr SA.
 Mol Cell Proteomics. 2013 Mar;12(3):825-31. [PMID: 23266961]
 [7] Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization.
 Sarraf SA, Raman M, Guarani-Pereira V, Sowa ME, Huttlin EL, Gygi SP, Harper JW.
 Nature. 2013 Apr 18;496(7445):372-6. [PMID: 23503661]
 [8] Integrated proteomic analysis of post-translational modifications by serial enrichment.
 Mertins P, Qiao JW, Patel J, Udeshi ND, Clauser KR, Mani DR, Burgess MW, Gillette MA, Jaffe JD, Carr SA.
 Nat Methods. 2013 Jul;10(7):634-7. [PMID: 23749302]
 [9] Systematic and quantitative assessment of the ubiquitin-modified proteome.
 Kim W, Bennett EJ, Huttlin EL, Guo A, Li J, Possemato A, Sowa ME, Rad R, Rush J, Comb MJ, Harper JW, Gygi SP.
 Mol Cell. 2011 Oct 21;44(2):325-40. [PMID: 21906983]
 [10] Global identification of modular cullin-RING ligase substrates.
 Emanuele MJ, Elia AE, Xu Q, Thoma CR, Izhar L, Leng Y, Guo A, Chen YN, Rush J, Hsu PW, Yen HC, Elledge SJ.
 Cell. 2011 Oct 14;147(2):459-74. [PMID: 21963094]
 [11] Mass spectrometric analysis of lysine ubiquitylation reveals promiscuity at site level.
 Danielsen JM, Sylvestersen KB, Bekker-Jensen S, Szklarczyk D, Poulsen JW, Horn H, Jensen LJ, Mailand N, Nielsen ML.
 Mol Cell Proteomics. 2011 Mar;10(3):M110.003590. [PMID: 21139048]
 [12] A data set of human endogenous protein ubiquitination sites.
 Shi Y, Chan DW, Jung SY, Malovannaya A, Wang Y, Qin J.
 Mol Cell Proteomics. 2011 May;10(5):M110.002089. [PMID: 20972266]
 [13] Monoclonal antibody cocktail as an enrichment tool for acetylome analysis.
 Shaw PG, Chaerkady R, Zhang Z, Davidson NE, Pandey A.
 Anal Chem. 2011 May 15;83(10):3623-6. [PMID: 21466224]
 [14] Mass spectrometry-based identification and characterisation of lysine and arginine methylation in the human proteome.
 Bremang M, Cuomo A, Agresta AM, Stugiewicz M, Spadotto V, Bonaldi T.
 Mol Biosyst. 2013 Jul 30;9(9):2231-47. [PMID: 23748837
Functional Description
  
Sequence Annotation
  
Keyword
 ATP-binding; Complete proteome; Nucleotide-binding; Reference proteome. 
Sequence Source
 UniProt (SWISSPROT/TrEMBL); GenBank; EMBL 
Protein Length
 410 AA 
Protein Sequence
MVNHFIAEFK RKHKKDISEN KRAVRRLRTA CERAKRTLSS STQASIEIDS LYEGIDFYTS 60
ITRARFEELN ADLFRGTLDP VEKALRDAKL DKSQIHDIVL VGGSTRIPKI QKLLQDFFNG 120
KELNKSINPD EAVAYGAAVQ AAILSGDKSE NVQDLLLLDV TPLSLGIETA GGVMTVLIKR 180
NTTIPTKQTQ TFTTYSDNQP GVLIQVYEGE RAMTKDNNLL GKFELTGIPP APRGVPQIEV 240
TFDIDANGIL NVSAVDKSTG KENKITITND KGRLSKEDIE RMVQEAEKYK AEDEKQRDKV 300
SSKNSLESYA FNMKATVEDE KLQGKINDED KQKILDKCNE IINWLDKNQT AEKEEFEHQQ 360
KELEKVCNPI ITKLYQSAGG MPGGMPGGFP GGGAPPSGGA SSGPTIEEVD 410 
Gene Ontology
 GO:0005829; C:cytosol; IEA:Compara.
 GO:0070062; C:extracellular vesicular exosome; IEA:Compara.
 GO:0005524; F:ATP binding; IEA:UniProtKB-KW.
 GO:0042623; F:ATPase activity, coupled; IEA:Compara.
 GO:0051085; P:chaperone mediated protein folding requiring cofactor; IEA:Compara.
 GO:0051726; P:regulation of cell cycle; IEA:Compara. 
Interpro
 IPR018181; Heat_shock_70_CS.
 IPR013126; Hsp_70_fam. 
Pfam
 PF00012; HSP70 
SMART
  
PROSITE
 PS01036; HSP70_3 
PRINTS
 PR00301; HEATSHOCK70.