CPLM 1.0 - Compendium of Protein Lysine Modification
TagContent
CPLM ID CPLM-028697
UniProt Accession
Genbank Protein ID
Genbank Nucleotide ID
  
Protein Name
 ATP synthase subunit gamma 
Protein Synonyms/Alias
  
Gene Name
 Atp5c1 
Gene Synonyms/Alias
  
Created Date
 July 27, 2013 
Organism
 Mus musculus (Mouse) 
NCBI Taxa ID
 10090 
Lysine Modification
Position
Peptide
Type
References
29VRNMATLKDITRRLKubiquitination[1]
39TRRLKSIKNIQKITKacetylation[2, 3]
43KSIKNIQKITKSMKMacetylation[2, 3]
46KNIQKITKSMKMVAAacetylation[3]
49QKITKSMKMVAAAKYacetylation[3, 4, 5]
49QKITKSMKMVAAAKYsuccinylation[5]
55MKMVAAAKYARAEREacetylation[3, 5, 6]
55MKMVAAAKYARAEREsuccinylation[5]
55MKMVAAAKYARAEREubiquitination[1]
64ARAERELKPARVYGTacetylation[3, 4]
79GSLALYEKADIKAPEacetylation[3]
83LYEKADIKAPEDKKKacetylation[2, 3]
88DIKAPEDKKKHLIIGacetylation[3]
115SSVAKQMKNEVAALTacetylation[2, 3, 4, 5, 6]
115SSVAKQMKNEVAALTsuccinylation[5]
136MIVGVGEKIKGILYRacetylation[3]
138VGVGEKIKGILYRTHacetylation[2, 3, 6]
154DQFLVSFKDVGRKPPacetylation[2, 3, 4, 5, 6, 7, 8, 9]
154DQFLVSFKDVGRKPPsuccinylation[5]
154DQFLVSFKDVGRKPPubiquitination[1]
262TAMDNASKNASDMIDubiquitination[1]
270NASDMIDKLTLTFNRacetylation[3, 5]
270NASDMIDKLTLTFNRsuccinylation[5]
270NASDMIDKLTLTFNRubiquitination[1]
Reference
 [1] Proteomic analyses reveal divergent ubiquitylation site patterns in murine tissues.
 Wagner SA, Beli P, Weinert BT, Schölz C, Kelstrup CD, Young C, Nielsen ML, Olsen JV, Brakebusch C, Choudhary C.
 Mol Cell Proteomics. 2012 Dec;11(12):1578-85. [PMID: 22790023]
 [2] Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways.
 Rardin MJ, Newman JC, Held JM, Cusack MP, Sorensen DJ, Li B, Schilling B, Mooney SD, Kahn CR, Verdin E, Gibson BW.
 Proc Natl Acad Sci U S A. 2013 Apr 16;110(16):6601-6. [PMID: 23576753]
 [3] Quantification of mitochondrial acetylation dynamics highlights prominent sites of metabolic regulation.
 Still AJ, Floyd BJ, Hebert AS, Bingman CA, Carson JJ, Gunderson DR, Dolan BK, Grimsrud PA, Dittenhafer-Reed KE, Stapleton DS, Keller MP, Westphall MS, Denu JM, Attie AD, Coon JJ, Pagliarini DJ.
 J Biol Chem. 2013 Jul 17;. [PMID: 23864654]
 [4] Quantitative assessment of the impact of the gut microbiota on lysine epsilon-acetylation of host proteins using gnotobiotic mice.
 Simon GM, Cheng J, Gordon JI.
 Proc Natl Acad Sci U S A. 2012 Jul 10;109(28):11133-8. [PMID: 22733758]
 [5] SIRT5-Mediated Lysine Desuccinylation Impacts Diverse Metabolic Pathways.
 Park J, Chen Y, Tishkoff DX, Peng C, Tan M, Dai L, Xie Z, Zhang Y, Zwaans BM, Skinner ME, Lombard DB, Zhao Y.
 Mol Cell. 2013 Jun 27;50(6):919-30. [PMID: 23806337]
 [6] Quantitative acetylome analysis reveals the roles of SIRT1 in regulating diverse substrates and cellular pathways.
 Chen Y, Zhao W, Yang JS, Cheng Z, Luo H, Lu Z, Tan M, Gu W, Zhao Y.
 Mol Cell Proteomics. 2012 Oct;11(10):1048-62. [PMID: 22826441]
 [7] Mitochondrial acetylome analysis in a mouse model of alcohol-induced liver injury utilizing SIRT3 knockout mice.
 Fritz KS, Galligan JJ, Hirschey MD, Verdin E, Petersen DR.
 J Proteome Res. 2012 Mar 2;11(3):1633-43. [PMID: 22309199]
 [8] Proteomic investigations of lysine acetylation identify diverse substrates of mitochondrial deacetylase sirt3.
 Sol EM, Wagner SA, Weinert BT, Kumar A, Kim HS, Deng CX, Choudhary C.
 PLoS One. 2012;7(12):e50545. [PMID: 23236377]
 [9] Circadian acetylome reveals regulation of mitochondrial metabolic pathways.
 Masri S, Patel VR, Eckel-Mahan KL, Peleg S, Forne I, Ladurner AG, Baldi P, Imhof A, Sassone-Corsi P.
 Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):3339-44. [PMID: 23341599
Functional Description
 Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. Part of the complex F(1) domain and the central stalk which is part of the complex rotary element. The gamma subunit protrudes into the catalytic domain formed of alpha(3)beta(3). Rotation of the central stalk against the surrounding alpha(3)beta(3) subunits leads to hydrolysis of ATP in three separate catalytic sites on the beta subunits (By similarity). 
Sequence Annotation
  
Keyword
 ATP synthesis; CF(1); Complete proteome; Hydrogen ion transport; Ion transport; Reference proteome; Transport. 
Sequence Source
 UniProt (SWISSPROT/TrEMBL); GenBank; EMBL 
Protein Length
 297 AA 
Protein Sequence
MFSRASVVGL SACAVQPQWI QVRNMATLKD ITRRLKSIKN IQKITKSMKM VAAAKYARAE 60
RELKPARVYG TGSLALYEKA DIKAPEDKKK HLIIGVSSDR GLCGAIHSSV AKQMKNEVAA 120
LTAAGKEVMI VGVGEKIKGI LYRTHSDQFL VSFKDVGRKP PTFGDASVIA LELLNSGYEF 180
DEGSIIFNQF KSVISYKTEE KPIFSLNTIA TAETMSIYDD IDADVLQNYQ EYNLANLIYY 240
SLKESTTSEQ SARMTAMDNA SKNASDMIDK LTLTFNRTRQ AVITKELIEI ISGAAAL 297 
Gene Ontology
 GO:0005743; C:mitochondrial inner membrane; IDA:MGI.
 GO:0005753; C:mitochondrial proton-transporting ATP synthase complex; IEA:Compara.
 GO:0045261; C:proton-transporting ATP synthase complex, catalytic core F(1); IEA:UniProtKB-KW.
 GO:0046933; F:proton-transporting ATP synthase activity, rotational mechanism; IEA:InterPro.
 GO:0046961; F:proton-transporting ATPase activity, rotational mechanism; IEA:InterPro.
 GO:0015986; P:ATP synthesis coupled proton transport; IEA:InterPro. 
Interpro
 IPR000131; ATPase_F1-cplx_gsu.
 IPR023632; ATPase_F1_gsu_CS.
 IPR023633; ATPase_F1_gsu_dom. 
Pfam
 PF00231; ATP-synt 
SMART
  
PROSITE
 PS00153; ATPASE_GAMMA 
PRINTS
 PR00126; ATPASEGAMMA.