[1] Mitochondrial acetylome analysis in a mouse model of alcohol-induced liver injury utilizing SIRT3 knockout mice.
Fritz KS, Galligan JJ, Hirschey MD, Verdin E, Petersen DR.
J Proteome Res. 2012 Mar 2;11(3):1633-43. [
PMID: 22309199]
[2] Quantitative assessment of the impact of the gut microbiota on lysine epsilon-acetylation of host proteins using gnotobiotic mice.
Simon GM, Cheng J, Gordon JI.
Proc Natl Acad Sci U S A. 2012 Jul 10;109(28):11133-8. [
PMID: 22733758]
[3] Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways.
Rardin MJ, Newman JC, Held JM, Cusack MP, Sorensen DJ, Li B, Schilling B, Mooney SD, Kahn CR, Verdin E, Gibson BW.
Proc Natl Acad Sci U S A. 2013 Apr 16;110(16):6601-6. [
PMID: 23576753]
[4] Proteomic analyses reveal divergent ubiquitylation site patterns in murine tissues.
Wagner SA, Beli P, Weinert BT, Schölz C, Kelstrup CD, Young C, Nielsen ML, Olsen JV, Brakebusch C, Choudhary C.
Mol Cell Proteomics. 2012 Dec;11(12):1578-85. [
PMID: 22790023]
[5] Substrate and functional diversity of lysine acetylation revealed by a proteomics survey.
Kim SC, Sprung R, Chen Y, Xu Y, Ball H, Pei J, Cheng T, Kho Y, Xiao H, Xiao L, Grishin NV, White M, Yang XJ, Zhao Y.
Mol Cell. 2006 Aug;23(4):607-18. [
PMID: 16916647]
[6] Quantitative acetylome analysis reveals the roles of SIRT1 in regulating diverse substrates and cellular pathways.
Chen Y, Zhao W, Yang JS, Cheng Z, Luo H, Lu Z, Tan M, Gu W, Zhao Y.
Mol Cell Proteomics. 2012 Oct;11(10):1048-62. [
PMID: 22826441]
[7] Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome.
Hebert AS, Dittenhafer-Reed KE, Yu W, Bailey DJ, Selen ES, Boersma MD, Carson JJ, Tonelli M, Balloon AJ, Higbee AJ, Westphall MS, Pagliarini DJ, Prolla TA, Assadi-Porter F, Roy S, Denu JM, Coon JJ.
Mol Cell. 2013 Jan 10;49(1):186-99. [
PMID: 23201123]
[8] Proteomic investigations of lysine acetylation identify diverse substrates of mitochondrial deacetylase sirt3.
Sol EM, Wagner SA, Weinert BT, Kumar A, Kim HS, Deng CX, Choudhary C.
PLoS One. 2012;7(12):e50545. [
PMID: 23236377]
[9] SIRT5-Mediated Lysine Desuccinylation Impacts Diverse Metabolic Pathways.
Park J, Chen Y, Tishkoff DX, Peng C, Tan M, Dai L, Xie Z, Zhang Y, Zwaans BM, Skinner ME, Lombard DB, Zhao Y.
Mol Cell. 2013 Jun 27;50(6):919-30. [
PMID: 23806337]
[10] Quantification of mitochondrial acetylation dynamics highlights prominent sites of metabolic regulation.
Still AJ, Floyd BJ, Hebert AS, Bingman CA, Carson JJ, Gunderson DR, Dolan BK, Grimsrud PA, Dittenhafer-Reed KE, Stapleton DS, Keller MP, Westphall MS, Denu JM, Attie AD, Coon JJ, Pagliarini DJ.
J Biol Chem. 2013 Jul 17;. [
PMID: 23864654]
[11] Functional lysine modification by an intrinsically reactive primary glycolytic metabolite.
Moellering RE, Cravatt BF.
Science. 2013 Aug 2;341(6145):549-53. [
PMID: 23908237]
[12] Circadian acetylome reveals regulation of mitochondrial metabolic pathways.
Masri S, Patel VR, Eckel-Mahan KL, Peleg S, Forne I, Ladurner AG, Baldi P, Imhof A, Sassone-Corsi P.
Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):3339-44. [
PMID: 23341599]