CPLM 1.0 - Compendium of Protein Lysine Modification
TagContent
CPLM ID CPLM-016882
UniProt Accession
Genbank Protein ID
Genbank Nucleotide ID
Protein Name
 Delta-1-pyrroline-5-carboxylate dehydrogenase, mitochondrial 
Protein Synonyms/Alias
 P5C dehydrogenase; Aldehyde dehydrogenase family 4 member A1 
Gene Name
 Aldh4a1 
Gene Synonyms/Alias
  
Created Date
 July 27, 2013 
Organism
 Mus musculus (Mouse) 
NCBI Taxa ID
 10090 
Lysine Modification
Position
Peptide
Type
References
30WKHTSSLKVTNEPILacetylation[1, 2]
30WKHTSSLKVTNEPILsuccinylation[2]
51PERDALQKALKDLKGacetylation[1, 2, 3, 4]
51PERDALQKALKDLKGsuccinylation[2]
54DALQKALKDLKGQMEacetylation[3]
57QKALKDLKGQMEAIPacetylation[3]
89SPFNHAHKVAKFCYAacetylation[3]
92NHAHKVAKFCYADKAacetylation[1, 2, 3, 4, 5, 6]
92NHAHKVAKFCYADKAsuccinylation[2]
98AKFCYADKALLNRAIacetylation[1, 2, 3, 4, 5, 7]
98AKFCYADKALLNRAIsuccinylation[2]
113DAALAARKEWDLKPMacetylation[1, 2, 3, 7]
113DAALAARKEWDLKPMsuccinylation[2]
118ARKEWDLKPMADRAQacetylation[1, 3, 4, 5]
129DRAQVFLKAADMLSGacetylation[1, 2, 3, 4, 5]
129DRAQVFLKAADMLSGsuccinylation[2]
145RRAEVLAKTMVGQGKacetylation[3]
174DFFRFNAKFAVELEGacetylation[1, 2, 4]
174DFFRFNAKFAVELEGsuccinylation[2]
317LAGECGGKNFHFVHSacetylation[1]
346AFEYGGQKCSACSRLacetylation[2]
346AFEYGGQKCSACSRLsuccinylation[2]
346AFEYGGQKCSACSRLubiquitination[8]
357CSRLYVPKSLWPQIKacetylation[1, 2, 3, 4, 5, 9]
357CSRLYVPKSLWPQIKsuccinylation[2]
364KSLWPQIKGRLLEEHacetylation[1, 2, 3, 4, 5]
364KSLWPQIKGRLLEEHsuccinylation[2]
375LEEHSRIKVGDPAEDacetylation[1]
394FSAVIDAKAFARIKKacetylation[2]
394FSAVIDAKAFARIKKsuccinylation[2]
401KAFARIKKWLEHARSacetylation[1, 3, 7]
444DPQEPIMKEEIFGPVacetylation[5]
461VYVYPDDKYRETLQLacetylation[1, 2, 4]
461VYVYPDDKYRETLQLsuccinylation[2]
508GNFYINDKSTGSVVGacetylation[1, 2, 3, 4]
508GNFYINDKSTGSVVGsuccinylation[2]
508GNFYINDKSTGSVVGubiquitination[8]
530RASGTNDKPGGPHYIacetylation[1, 3, 4, 10]
530RASGTNDKPGGPHYIubiquitination[8]
551QVIKETHKPLGDWRYacetylation[1, 2, 3, 4, 5, 11]
551QVIKETHKPLGDWRYsuccinylation[2]
Reference
 [1] Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways.
 Rardin MJ, Newman JC, Held JM, Cusack MP, Sorensen DJ, Li B, Schilling B, Mooney SD, Kahn CR, Verdin E, Gibson BW.
 Proc Natl Acad Sci U S A. 2013 Apr 16;110(16):6601-6. [PMID: 23576753]
 [2] SIRT5-Mediated Lysine Desuccinylation Impacts Diverse Metabolic Pathways.
 Park J, Chen Y, Tishkoff DX, Peng C, Tan M, Dai L, Xie Z, Zhang Y, Zwaans BM, Skinner ME, Lombard DB, Zhao Y.
 Mol Cell. 2013 Jun 27;50(6):919-30. [PMID: 23806337]
 [3] Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome.
 Hebert AS, Dittenhafer-Reed KE, Yu W, Bailey DJ, Selen ES, Boersma MD, Carson JJ, Tonelli M, Balloon AJ, Higbee AJ, Westphall MS, Pagliarini DJ, Prolla TA, Assadi-Porter F, Roy S, Denu JM, Coon JJ.
 Mol Cell. 2013 Jan 10;49(1):186-99. [PMID: 23201123]
 [4] Quantification of mitochondrial acetylation dynamics highlights prominent sites of metabolic regulation.
 Still AJ, Floyd BJ, Hebert AS, Bingman CA, Carson JJ, Gunderson DR, Dolan BK, Grimsrud PA, Dittenhafer-Reed KE, Stapleton DS, Keller MP, Westphall MS, Denu JM, Attie AD, Coon JJ, Pagliarini DJ.
 J Biol Chem. 2013 Jul 17;. [PMID: 23864654]
 [5] Quantitative assessment of the impact of the gut microbiota on lysine epsilon-acetylation of host proteins using gnotobiotic mice.
 Simon GM, Cheng J, Gordon JI.
 Proc Natl Acad Sci U S A. 2012 Jul 10;109(28):11133-8. [PMID: 22733758]
 [6] Quantitative acetylome analysis reveals the roles of SIRT1 in regulating diverse substrates and cellular pathways.
 Chen Y, Zhao W, Yang JS, Cheng Z, Luo H, Lu Z, Tan M, Gu W, Zhao Y.
 Mol Cell Proteomics. 2012 Oct;11(10):1048-62. [PMID: 22826441]
 [7] Substrate and functional diversity of lysine acetylation revealed by a proteomics survey.
 Kim SC, Sprung R, Chen Y, Xu Y, Ball H, Pei J, Cheng T, Kho Y, Xiao H, Xiao L, Grishin NV, White M, Yang XJ, Zhao Y.
 Mol Cell. 2006 Aug;23(4):607-18. [PMID: 16916647]
 [8] Proteomic analyses reveal divergent ubiquitylation site patterns in murine tissues.
 Wagner SA, Beli P, Weinert BT, Schölz C, Kelstrup CD, Young C, Nielsen ML, Olsen JV, Brakebusch C, Choudhary C.
 Mol Cell Proteomics. 2012 Dec;11(12):1578-85. [PMID: 22790023]
 [9] The fasted/fed mouse metabolic acetylome: N6-acetylation differences suggest acetylation coordinates organ-specific fuel switching.
 Yang L, Vaitheesvaran B, Hartil K, Robinson AJ, Hoopmann MR, Eng JK, Kurland IJ, Bruce JE.
 J Proteome Res. 2011 Sep 2;10(9):4134-49. [PMID: 21728379]
 [10] Proteomic analysis of lysine acetylation sites in rat tissues reveals organ specificity and subcellular patterns.
 Lundby A, Lage K, Weinert BT, Bekker-Jensen DB, Secher A, Skovgaard T, Kelstrup CD, Dmytriyev A, Choudhary C, Lundby C, Olsen JV.
 Cell Rep. 2012 Aug 30;2(2):419-31. [PMID: 22902405]
 [11] Circadian acetylome reveals regulation of mitochondrial metabolic pathways.
 Masri S, Patel VR, Eckel-Mahan KL, Peleg S, Forne I, Ladurner AG, Baldi P, Imhof A, Sassone-Corsi P.
 Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):3339-44. [PMID: 23341599
Functional Description
 Irreversible conversion of delta-1-pyrroline-5- carboxylate (P5C), derived either from proline or ornithine, to glutamate. This is a necessary step in the pathway interconnecting the urea and tricarboxylic acid cycles. The preferred substrate is glutamic gamma-semialdehyde, other substrates include succinic, glutaric and adipic semialdehydes (By similarity). 
Sequence Annotation
 NP_BIND 285 289 NAD.
 ACT_SITE 313 313 Proton acceptor.
 ACT_SITE 347 347 Nucleophile.
 BINDING 207 207 NAD.
 BINDING 232 232 NAD.
 BINDING 446 446 NAD.
 BINDING 512 512 Substrate.
 MOD_RES 98 98 N6-acetyllysine.
 MOD_RES 113 113 N6-acetyllysine.
 MOD_RES 401 401 N6-acetyllysine.  
Keyword
 3D-structure; Acetylation; Complete proteome; Mitochondrion; NAD; Oxidoreductase; Proline metabolism; Reference proteome; Transit peptide. 
Sequence Source
 UniProt (SWISSPROT/TrEMBL); GenBank; EMBL 
Protein Length
 562 AA 
Protein Sequence
MLPLPSLRRS LLSHAWRGAG LRWKHTSSLK VTNEPILAFS QGSPERDALQ KALKDLKGQM 60
EAIPCVVGDE EVWTSDIQYQ LSPFNHAHKV AKFCYADKAL LNRAIDAALA ARKEWDLKPM 120
ADRAQVFLKA ADMLSGPRRA EVLAKTMVGQ GKTVIQAEID AAAELIDFFR FNAKFAVELE 180
GEQPISVPPS TNHTVYRGLE GFVAAISPFN FTAIGGNLAG APALMGNVVL WKPSDTAMLA 240
SYAVYRILRE AGLPPNIIQF VPADGPTFGD TVTSSEHLCG INFTGSVPTF KHLWRQVAQN 300
LDRFRTFPRL AGECGGKNFH FVHSSADVDS VVSGTLRSAF EYGGQKCSAC SRLYVPKSLW 360
PQIKGRLLEE HSRIKVGDPA EDFGTFFSAV IDAKAFARIK KWLEHARSSP SLSILAGGQC 420
NESVGYYVEP CIIESKDPQE PIMKEEIFGP VLTVYVYPDD KYRETLQLVD STTSYGLTGA 480
VFAQDKAIVQ EATRMLRNAA GNFYINDKST GSVVGQQPFG GARASGTNDK PGGPHYILRW 540
TSPQVIKETH KPLGDWRYSY MQ 562 
Gene Ontology
 GO:0005759; C:mitochondrial matrix; IEA:UniProtKB-SubCell.
 GO:0005739; C:mitochondrion; IDA:MGI.
 GO:0003842; F:1-pyrroline-5-carboxylate dehydrogenase activity; IEA:EC.
 GO:0016620; F:oxidoreductase activity, acting on the aldehyde or oxo group of donors, NAD or NADP as acceptor; IEA:InterPro.
 GO:0006561; P:proline biosynthetic process; IEA:InterPro.
 GO:0010133; P:proline catabolic process to glutamate; IEA:UniProtKB-UniPathway. 
Interpro
 IPR005931; 1-pyrroline-5-COlate_DH.
 IPR016161; Ald_DH/histidinol_DH.
 IPR016163; Ald_DH_C.
 IPR016160; Ald_DH_CS.
 IPR016162; Ald_DH_N.
 IPR015590; Aldehyde_DH_dom. 
Pfam
 PF00171; Aldedh 
SMART
  
PROSITE
 PS00070; ALDEHYDE_DEHYDR_CYS
 PS00687; ALDEHYDE_DEHYDR_GLU 
PRINTS