CPLM 1.0 - Compendium of Protein Lysine Modification
TagContent
CPLM ID CPLM-009191
UniProt Accession
Genbank Protein ID
Genbank Nucleotide ID
Protein Name
 Triosephosphate isomerase 
Protein Synonyms/Alias
 TIM; Triose-phosphate isomerase 
Gene Name
 TPI1 
Gene Synonyms/Alias
 TPI 
Created Date
 July 27, 2013 
Organism
 Homo sapiens (Human) 
NCBI Taxa ID
 9606 
Lysine Modification
Position
Peptide
Type
References
43SAMAPSRKFFVGGNWubiquitination[1, 2]
51FFVGGNWKMNGRKQSacetylation[3]
51FFVGGNWKMNGRKQSubiquitination[1, 2, 4, 5, 6, 7, 8]
56NWKMNGRKQSLGELIubiquitination[5, 7, 9]
70IGTLNAAKVPADTEVubiquitination[7, 10]
96ARQKLDPKIAVAAQNacetylation[11]
96ARQKLDPKIAVAAQNubiquitination[1, 2, 6, 7, 9]
106VAAQNCYKVTNGAFTubiquitination[1, 2, 5, 7, 9, 10]
122EISPGMIKDCGATWVubiquitination[7, 9]
168VIACIGEKLDEREAGubiquitination[7, 10]
179REAGITEKVVFEQTKacetylation[11]
179REAGITEKVVFEQTKubiquitination[1, 2, 6, 7, 8, 9, 12, 13]
186KVVFEQTKVIADNVKacetylation[11]
186KVVFEQTKVIADNVKubiquitination[1, 2, 5, 6, 7, 9]
193KVIADNVKDWSKVVLubiquitination[1, 2, 5, 6, 7, 8, 9, 12, 14]
197DNVKDWSKVVLAYEPubiquitination[1, 2, 5, 7]
212VWAIGTGKTATPQQAubiquitination[1, 2, 5, 6, 7, 8, 9, 12, 13, 14]
225QAQEVHEKLRGWLKSacetylation[3, 11, 15]
225QAQEVHEKLRGWLKSubiquitination[1, 2, 5, 6, 7, 9]
231EKLRGWLKSNVSDAVacetylation[3, 16]
231EKLRGWLKSNVSDAVubiquitination[1, 2, 5, 6, 7, 8, 9, 12]
256SVTGATCKELASQPDphosphoglycerylation[17]
256SVTGATCKELASQPDubiquitination[7]
275LVGGASLKPEFVDIIacetylation[3, 11, 16, 18]
275LVGGASLKPEFVDIIubiquitination[1, 2, 5, 7, 8, 9, 10, 12]
285FVDIINAKQ******ubiquitination[5, 7, 9]
Reference
 [1] A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles.
 Wagner SA, Beli P, Weinert BT, Nielsen ML, Cox J, Mann M, Choudhary C.
 Mol Cell Proteomics. 2011 Oct;10(10):M111.013284. [PMID: 21890473]
 [2] hCKSAAP_UbSite: improved prediction of human ubiquitination sites by exploiting amino acid pattern and properties.
 Chen Z, Zhou Y, Song J, Zhang Z.
 Biochim Biophys Acta. 2013 Aug;1834(8):1461-7. [PMID: 23603789]
 [3] Lysine acetylation targets protein complexes and co-regulates major cellular functions.
 Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M.
 Science. 2009 Aug 14;325(5942):834-40. [PMID: 19608861]
 [4] Ubiquitin ligase substrate identification through quantitative proteomics at both the protein and peptide levels.
 Lee KA, Hammerle LP, Andrews PS, Stokes MP, Mustelin T, Silva JC, Black RA, Doedens JR.
 J Biol Chem. 2011 Dec 2;286(48):41530-8. [PMID: 21987572]
 [5] Methods for quantification of in vivo changes in protein ubiquitination following proteasome and deubiquitinase inhibition.
 Udeshi ND, Mani DR, Eisenhaure T, Mertins P, Jaffe JD, Clauser KR, Hacohen N, Carr SA.
 Mol Cell Proteomics. 2012 May;11(5):148-59. [PMID: 22505724]
 [6] Systems-wide analysis of ubiquitylation dynamics reveals a key role for PAF15 ubiquitylation in DNA-damage bypass.
 Povlsen LK, Beli P, Wagner SA, Poulsen SL, Sylvestersen KB, Poulsen JW, Nielsen ML, Bekker-Jensen S, Mailand N, Choudhary C.
 Nat Cell Biol. 2012 Oct;14(10):1089-98. [PMID: 23000965]
 [7] Refined preparation and use of anti-diglycine remnant (K-ε-GG) antibody enables routine quantification of 10,000s of ubiquitination sites in single proteomics experiments.
 Udeshi ND, Svinkina T, Mertins P, Kuhn E, Mani DR, Qiao JW, Carr SA.
 Mol Cell Proteomics. 2013 Mar;12(3):825-31. [PMID: 23266961]
 [8] Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization.
 Sarraf SA, Raman M, Guarani-Pereira V, Sowa ME, Huttlin EL, Gygi SP, Harper JW.
 Nature. 2013 Apr 18;496(7445):372-6. [PMID: 23503661]
 [9] Integrated proteomic analysis of post-translational modifications by serial enrichment.
 Mertins P, Qiao JW, Patel J, Udeshi ND, Clauser KR, Mani DR, Burgess MW, Gillette MA, Jaffe JD, Carr SA.
 Nat Methods. 2013 Jul;10(7):634-7. [PMID: 23749302]
 [10] Global identification of modular cullin-RING ligase substrates.
 Emanuele MJ, Elia AE, Xu Q, Thoma CR, Izhar L, Leng Y, Guo A, Chen YN, Rush J, Hsu PW, Yen HC, Elledge SJ.
 Cell. 2011 Oct 14;147(2):459-74. [PMID: 21963094]
 [11] Proteomic investigations of lysine acetylation identify diverse substrates of mitochondrial deacetylase sirt3.
 Sol EM, Wagner SA, Weinert BT, Kumar A, Kim HS, Deng CX, Choudhary C.
 PLoS One. 2012;7(12):e50545. [PMID: 23236377]
 [12] Systematic and quantitative assessment of the ubiquitin-modified proteome.
 Kim W, Bennett EJ, Huttlin EL, Guo A, Li J, Possemato A, Sowa ME, Rad R, Rush J, Comb MJ, Harper JW, Gygi SP.
 Mol Cell. 2011 Oct 21;44(2):325-40. [PMID: 21906983]
 [13] Proteome-wide identification of ubiquitylation sites by conjugation of engineered lysine-less ubiquitin.
 Oshikawa K, Matsumoto M, Oyamada K, Nakayama KI.
 J Proteome Res. 2012 Feb 3;11(2):796-807. [PMID: 22053931]
 [14] Mass spectrometric analysis of lysine ubiquitylation reveals promiscuity at site level.
 Danielsen JM, Sylvestersen KB, Bekker-Jensen S, Szklarczyk D, Poulsen JW, Horn H, Jensen LJ, Mailand N, Nielsen ML.
 Mol Cell Proteomics. 2011 Mar;10(3):M110.003590. [PMID: 21139048]
 [15] Substrate and functional diversity of lysine acetylation revealed by a proteomics survey.
 Kim SC, Sprung R, Chen Y, Xu Y, Ball H, Pei J, Cheng T, Kho Y, Xiao H, Xiao L, Grishin NV, White M, Yang XJ, Zhao Y.
 Mol Cell. 2006 Aug;23(4):607-18. [PMID: 16916647]
 [16] Proteomic investigations reveal a role for RNA processing factor THRAP3 in the DNA damage response.
 Beli P, Lukashchuk N, Wagner SA, Weinert BT, Olsen JV, Baskcomb L, Mann M, Jackson SP, Choudhary C.
 Mol Cell. 2012 Apr 27;46(2):212-25. [PMID: 22424773]
 [17] Functional lysine modification by an intrinsically reactive primary glycolytic metabolite.
 Moellering RE, Cravatt BF.
 Science. 2013 Aug 2;341(6145):549-53. [PMID: 23908237]
 [18] Regulation of cellular metabolism by protein lysine acetylation.
 Zhao S, Xu W, Jiang W, Yu W, Lin Y, Zhang T, Yao J, Zhou L, Zeng Y, Li H, Li Y, Shi J, An W, Hancock SM, He F, Qin L, Chin J, Yang P, Chen X, Lei Q, Xiong Y, Guan KL.
 Science. 2010 Feb 19;327(5968):1000-4. [PMID: 20167786
Functional Description
  
Sequence Annotation
 ACT_SITE 133 133 Electrophile.
 ACT_SITE 203 203 Proton acceptor.
 BINDING 49 49 Substrate.
 BINDING 51 51 Substrate.
 MOD_RES 51 51 N6-acetyllysine.
 MOD_RES 58 58 Phosphoserine.
 MOD_RES 105 105 Nitrated tyrosine (By similarity).
 MOD_RES 117 117 Phosphoserine.
 MOD_RES 231 231 N6-acetyllysine.
 MOD_RES 246 246 Nitrated tyrosine (By similarity).
 MOD_RES 275 275 N6-acetyllysine.  
Keyword
 3D-structure; Acetylation; Alternative promoter usage; Alternative splicing; Complete proteome; Direct protein sequencing; Disease mutation; Gluconeogenesis; Glycolysis; Isomerase; Nitration; Pentose shunt; Phosphoprotein; Polymorphism; Reference proteome. 
Sequence Source
 UniProt (SWISSPROT/TrEMBL); GenBank; EMBL 
Protein Length
 286 AA 
Protein Sequence
MAEDGEEAEF HFAALYISGQ WPRLRADTDL QRLGSSAMAP SRKFFVGGNW KMNGRKQSLG 60
ELIGTLNAAK VPADTEVVCA PPTAYIDFAR QKLDPKIAVA AQNCYKVTNG AFTGEISPGM 120
IKDCGATWVV LGHSERRHVF GESDELIGQK VAHALAEGLG VIACIGEKLD EREAGITEKV 180
VFEQTKVIAD NVKDWSKVVL AYEPVWAIGT GKTATPQQAQ EVHEKLRGWL KSNVSDAVAQ 240
STRIIYGGSV TGATCKELAS QPDVDGFLVG GASLKPEFVD IINAKQ 286 
Gene Ontology
 GO:0005829; C:cytosol; TAS:Reactome.
 GO:0004807; F:triose-phosphate isomerase activity; NAS:UniProtKB.
 GO:0009790; P:embryo development; IEA:Compara.
 GO:0006094; P:gluconeogenesis; TAS:Reactome.
 GO:0019682; P:glyceraldehyde-3-phosphate metabolic process; IEA:Compara.
 GO:0006096; P:glycolysis; TAS:Reactome.
 GO:0006098; P:pentose-phosphate shunt; IEA:UniProtKB-KW.
 GO:0044281; P:small molecule metabolic process; TAS:Reactome. 
Interpro
 IPR013785; Aldolase_TIM.
 IPR022896; TrioseP_Isoase_bac/euk.
 IPR000652; Triosephosphate_isomerase.
 IPR020861; Triosephosphate_isomerase_AS. 
Pfam
 PF00121; TIM 
SMART
  
PROSITE
 PS00171; TIM_1
 PS51440; TIM_2 
PRINTS