[1] Site-specific identification of SUMO-2 targets in cells reveals an inverted SUMOylation motif and a hydrophobic cluster SUMOylation motif.
Matic I, Schimmel J, Hendriks IA, van Santen MA, van de Rijke F, van Dam H, Gnad F, Mann M, Vertegaal AC.
Mol Cell. 2010 Aug 27;39(4):641-52. [
PMID: 20797634]
[2] Targeted identification of SUMOylation sites in human proteins using affinity enrichment and paralog-specific reporter ions.
Lamoliatte F, Bonneil E, Durette C, Caron-Lizotte O, Wildemann D, Zerweck J, Wenschuh H, Thibault P.
Mol Cell Proteomics. 2013 Jun 7;. [
PMID: 23750026]
[3] Systematic and quantitative assessment of the ubiquitin-modified proteome.
Kim W, Bennett EJ, Huttlin EL, Guo A, Li J, Possemato A, Sowa ME, Rad R, Rush J, Comb MJ, Harper JW, Gygi SP.
Mol Cell. 2011 Oct 21;44(2):325-40. [
PMID: 21906983]
[4] Refined preparation and use of anti-diglycine remnant (K-ε-GG) antibody enables routine quantification of 10,000s of ubiquitination sites in single proteomics experiments.
Udeshi ND, Svinkina T, Mertins P, Kuhn E, Mani DR, Qiao JW, Carr SA.
Mol Cell Proteomics. 2013 Mar;12(3):825-31. [
PMID: 23266961]
[5] Methods for quantification of in vivo changes in protein ubiquitination following proteasome and deubiquitinase inhibition.
Udeshi ND, Mani DR, Eisenhaure T, Mertins P, Jaffe JD, Clauser KR, Hacohen N, Carr SA.
Mol Cell Proteomics. 2012 May;11(5):148-59. [
PMID: 22505724]
[6] A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles.
Wagner SA, Beli P, Weinert BT, Nielsen ML, Cox J, Mann M, Choudhary C.
Mol Cell Proteomics. 2011 Oct;10(10):M111.013284. [
PMID: 21890473]
[7] hCKSAAP_UbSite: improved prediction of human ubiquitination sites by exploiting amino acid pattern and properties.
Chen Z, Zhou Y, Song J, Zhang Z.
Biochim Biophys Acta. 2013 Aug;1834(8):1461-7. [
PMID: 23603789]
[8] Global analysis of lysine ubiquitination by ubiquitin remnant immunoaffinity profiling.
Xu G, Paige JS, Jaffrey SR.
Nat Biotechnol. 2010 Aug;28(8):868-73. [
PMID: 20639865]
[9] Systems-wide analysis of ubiquitylation dynamics reveals a key role for PAF15 ubiquitylation in DNA-damage bypass.
Povlsen LK, Beli P, Wagner SA, Poulsen SL, Sylvestersen KB, Poulsen JW, Nielsen ML, Bekker-Jensen S, Mailand N, Choudhary C.
Nat Cell Biol. 2012 Oct;14(10):1089-98. [
PMID: 23000965]
[10] Proteomic analyses reveal divergent ubiquitylation site patterns in murine tissues.
Wagner SA, Beli P, Weinert BT, Schölz C, Kelstrup CD, Young C, Nielsen ML, Olsen JV, Brakebusch C, Choudhary C.
Mol Cell Proteomics. 2012 Dec;11(12):1578-85. [
PMID: 22790023]
[11] Spermidine and resveratrol induce autophagy by distinct pathways converging on the acetylproteome.
Morselli E, Mariño G, Bennetzen MV, Eisenberg T, Megalou E, Schroeder S, Cabrera S, Bénit P, Rustin P, Criollo A, Kepp O, Galluzzi L, Shen S, Malik SA, Maiuri MC, Horio Y, López-Otín C, Andersen JS, Tavernarakis N, Madeo F, Kroemer G.
J Cell Biol. 2011 Feb 21;192(4):615-29. [
PMID: 21339330]
[12] Lysine acetylation targets protein complexes and co-regulates major cellular functions.
Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M.
Science. 2009 Aug 14;325(5942):834-40. [
PMID: 19608861]
[13] Ubiquitin ligase substrate identification through quantitative proteomics at both the protein and peptide levels.
Lee KA, Hammerle LP, Andrews PS, Stokes MP, Mustelin T, Silva JC, Black RA, Doedens JR.
J Biol Chem. 2011 Dec 2;286(48):41530-8. [
PMID: 21987572]
[14] Mass spectrometry-based identification and characterisation of lysine and arginine methylation in the human proteome.
Bremang M, Cuomo A, Agresta AM, Stugiewicz M, Spadotto V, Bonaldi T.
Mol Biosyst. 2013 Jul 30;9(9):2231-47. [
PMID: 23748837]
[15] Integrated proteomic analysis of post-translational modifications by serial enrichment.
Mertins P, Qiao JW, Patel J, Udeshi ND, Clauser KR, Mani DR, Burgess MW, Gillette MA, Jaffe JD, Carr SA.
Nat Methods. 2013 Jul;10(7):634-7. [
PMID: 23749302]
[16] Global identification of modular cullin-RING ligase substrates.
Emanuele MJ, Elia AE, Xu Q, Thoma CR, Izhar L, Leng Y, Guo A, Chen YN, Rush J, Hsu PW, Yen HC, Elledge SJ.
Cell. 2011 Oct 14;147(2):459-74. [
PMID: 21963094]
[17] Proteomic investigations reveal a role for RNA processing factor THRAP3 in the DNA damage response.
Beli P, Lukashchuk N, Wagner SA, Weinert BT, Olsen JV, Baskcomb L, Mann M, Jackson SP, Choudhary C.
Mol Cell. 2012 Apr 27;46(2):212-25. [
PMID: 22424773]
[18] Proteomic investigations of lysine acetylation identify diverse substrates of mitochondrial deacetylase sirt3.
Sol EM, Wagner SA, Weinert BT, Kumar A, Kim HS, Deng CX, Choudhary C.
PLoS One. 2012;7(12):e50545. [
PMID: 23236377]