CPLM 1.0 - Compendium of Protein Lysine Modification
TagContent
CPLM ID CPLM-010871
UniProt Accession
Genbank Protein ID
Genbank Nucleotide ID
Protein Name
 Large neutral amino acids transporter small subunit 1 
Protein Synonyms/Alias
 4F2 light chain; 4F2 LC; 4F2LC; CD98 light chain; Integral membrane protein E16; L-type amino acid transporter 1; hLAT1; Solute carrier family 7 member 5; y+ system cationic amino acid transporter 
Gene Name
 SLC7A5 
Gene Synonyms/Alias
 CD98LC; LAT1; MPE16 
Created Date
 July 27, 2013 
Organism
 Homo sapiens (Human) 
NCBI Taxa ID
 9606 
Lysine Modification
Position
Peptide
Type
References
19AAPAAEEKEEAREKMubiquitination[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
25EKEEAREKMLAAKSAubiquitination[4, 5, 6, 8, 9]
30REKMLAAKSADGSAPubiquitination[1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]
483VWWKNKPKWLLQGIFubiquitination[5]
Reference
 [1] Quantitative analysis of global ubiquitination in HeLa cells by mass spectrometry.
 Meierhofer D, Wang X, Huang L, Kaiser P.
 J Proteome Res. 2008 Oct;7(10):4566-76. [PMID: 18781797]
 [2] A data set of human endogenous protein ubiquitination sites.
 Shi Y, Chan DW, Jung SY, Malovannaya A, Wang Y, Qin J.
 Mol Cell Proteomics. 2011 May;10(5):M110.002089. [PMID: 20972266]
 [3] Mass spectrometric analysis of lysine ubiquitylation reveals promiscuity at site level.
 Danielsen JM, Sylvestersen KB, Bekker-Jensen S, Szklarczyk D, Poulsen JW, Horn H, Jensen LJ, Mailand N, Nielsen ML.
 Mol Cell Proteomics. 2011 Mar;10(3):M110.003590. [PMID: 21139048]
 [4] Systematic and quantitative assessment of the ubiquitin-modified proteome.
 Kim W, Bennett EJ, Huttlin EL, Guo A, Li J, Possemato A, Sowa ME, Rad R, Rush J, Comb MJ, Harper JW, Gygi SP.
 Mol Cell. 2011 Oct 21;44(2):325-40. [PMID: 21906983]
 [5] Global identification of modular cullin-RING ligase substrates.
 Emanuele MJ, Elia AE, Xu Q, Thoma CR, Izhar L, Leng Y, Guo A, Chen YN, Rush J, Hsu PW, Yen HC, Elledge SJ.
 Cell. 2011 Oct 14;147(2):459-74. [PMID: 21963094]
 [6] Ubiquitin ligase substrate identification through quantitative proteomics at both the protein and peptide levels.
 Lee KA, Hammerle LP, Andrews PS, Stokes MP, Mustelin T, Silva JC, Black RA, Doedens JR.
 J Biol Chem. 2011 Dec 2;286(48):41530-8. [PMID: 21987572]
 [7] Proteome-wide identification of ubiquitylation sites by conjugation of engineered lysine-less ubiquitin.
 Oshikawa K, Matsumoto M, Oyamada K, Nakayama KI.
 J Proteome Res. 2012 Feb 3;11(2):796-807. [PMID: 22053931]
 [8] Refined preparation and use of anti-diglycine remnant (K-ε-GG) antibody enables routine quantification of 10,000s of ubiquitination sites in single proteomics experiments.
 Udeshi ND, Svinkina T, Mertins P, Kuhn E, Mani DR, Qiao JW, Carr SA.
 Mol Cell Proteomics. 2013 Mar;12(3):825-31. [PMID: 23266961]
 [9] Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization.
 Sarraf SA, Raman M, Guarani-Pereira V, Sowa ME, Huttlin EL, Gygi SP, Harper JW.
 Nature. 2013 Apr 18;496(7445):372-6. [PMID: 23503661]
 [10] hCKSAAP_UbSite: improved prediction of human ubiquitination sites by exploiting amino acid pattern and properties.
 Chen Z, Zhou Y, Song J, Zhang Z.
 Biochim Biophys Acta. 2013 Aug;1834(8):1461-7. [PMID: 23603789]
 [11] Integrated proteomic analysis of post-translational modifications by serial enrichment.
 Mertins P, Qiao JW, Patel J, Udeshi ND, Clauser KR, Mani DR, Burgess MW, Gillette MA, Jaffe JD, Carr SA.
 Nat Methods. 2013 Jul;10(7):634-7. [PMID: 23749302]
 [12] A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles.
 Wagner SA, Beli P, Weinert BT, Nielsen ML, Cox J, Mann M, Choudhary C.
 Mol Cell Proteomics. 2011 Oct;10(10):M111.013284. [PMID: 21890473]
 [13] Methods for quantification of in vivo changes in protein ubiquitination following proteasome and deubiquitinase inhibition.
 Udeshi ND, Mani DR, Eisenhaure T, Mertins P, Jaffe JD, Clauser KR, Hacohen N, Carr SA.
 Mol Cell Proteomics. 2012 May;11(5):148-59. [PMID: 22505724]
 [14] Systems-wide analysis of ubiquitylation dynamics reveals a key role for PAF15 ubiquitylation in DNA-damage bypass.
 Povlsen LK, Beli P, Wagner SA, Poulsen SL, Sylvestersen KB, Poulsen JW, Nielsen ML, Bekker-Jensen S, Mailand N, Choudhary C.
 Nat Cell Biol. 2012 Oct;14(10):1089-98. [PMID: 23000965
Functional Description
 Sodium-independent, high-affinity transport of large neutral amino acids such as phenylalanine, tyrosine, leucine, arginine and tryptophan, when associated with SLC3A2/4F2hc. Involved in cellular amino acid uptake. Acts as an amino acid exchanger. Involved in the transport of L-DOPA across the blood- brain barrier, and that of thyroid hormones triiodothyronine (T3) and thyroxine (T4) across the cell membrane in tissues such as placenta. Plays a role in neuronal cell proliferation (neurogenesis) in brain. Involved in the uptake of methylmercury (MeHg) when administered as the L-cysteine or D,L-homocysteine complexes, and hence plays a role in metal ion homeostasis and toxicity. Involved in the cellular activity of small molecular weight nitrosothiols, via the stereoselective transport of L- nitrosocysteine (L-CNSO) across the transmembrane. May play an important role in high-grade gliomas. Mediates blood-to-retina L- leucine transport across the inner blood-retinal barrier which in turn may play a key role in maintaining large neutral amino acids as well as neurotransmitters in the neural retina. Acts as the major transporter of tyrosine in fibroblasts. 
Sequence Annotation
 MOD_RES 31 31 Phosphoserine.
 MOD_RES 45 45 Phosphothreonine.
 CARBOHYD 49 49 N-linked (GlcNAc...) (Potential).
 CARBOHYD 230 230 N-linked (GlcNAc...) (Potential).
 CARBOHYD 340 340 N-linked (GlcNAc...) (Potential).
 CROSSLNK 19 19 Glycyl lysine isopeptide (Lys-Gly)
 CROSSLNK 30 30 Glycyl lysine isopeptide (Lys-Gly)  
Keyword
 Amino-acid transport; Cell membrane; Complete proteome; Cytoplasm; Developmental protein; Differentiation; Direct protein sequencing; Disulfide bond; Glycoprotein; Isopeptide bond; Membrane; Neurogenesis; Phosphoprotein; Polymorphism; Reference proteome; Transmembrane; Transmembrane helix; Transport; Ubl conjugation. 
Sequence Source
 UniProt (SWISSPROT/TrEMBL); GenBank; EMBL 
Protein Length
 507 AA 
Protein Sequence
MAGAGPKRRA LAAPAAEEKE EAREKMLAAK SADGSAPAGE GEGVTLQRNI TLLNGVAIIV 60
GTIIGSGIFV TPTGVLKEAG SPGLALVVWA ACGVFSIVGA LCYAELGTTI SKSGGDYAYM 120
LEVYGSLPAF LKLWIELLII RPSSQYIVAL VFATYLLKPL FPTCPVPEEA AKLVACLCVL 180
LLTAVNCYSV KAATRVQDAF AAAKLLALAL IILLGFVQIG KGDVSNLDPN FSFEGTKLDV 240
GNIVLALYSG LFAYGGWNYL NFVTEEMINP YRNLPLAIII SLPIVTLVYV LTNLAYFTTL 300
STEQMLSSEA VAVDFGNYHL GVMSWIIPVF VGLSCFGSVN GSLFTSSRLF FVGSREGHLP 360
SILSMIHPQL LTPVPSLVFT CVMTLLYAFS KDIFSVINFF SFFNWLCVAL AIIGMIWLRH 420
RKPELERPIK VNLALPVFFI LACLFLIAVS FWKTPVECGI GFTIILSGLP VYFFGVWWKN 480
KPKWLLQGIF STTVLCQKLM QVVPQET 507 
Gene Ontology
 GO:0016324; C:apical plasma membrane; IEA:UniProtKB-SubCell.
 GO:0005829; C:cytosol; IEA:UniProtKB-SubCell.
 GO:0016021; C:integral to membrane; IEA:UniProtKB-KW.
 GO:0005886; C:plasma membrane; TAS:Reactome.
 GO:0015179; F:L-amino acid transmembrane transporter activity; IEA:Compara.
 GO:0015175; F:neutral amino acid transmembrane transporter activity; TAS:ProtInc.
 GO:0042605; F:peptide antigen binding; ISS:UniProtKB.
 GO:0007596; P:blood coagulation; TAS:Reactome.
 GO:0030154; P:cell differentiation; IEA:UniProtKB-KW.
 GO:0006520; P:cellular amino acid metabolic process; TAS:ProtInc.
 GO:0050900; P:leukocyte migration; TAS:Reactome.
 GO:0007399; P:nervous system development; IEA:UniProtKB-KW. 
Interpro
 IPR002293; AA/rel_permease1.
 IPR004760; L_AA_transporter. 
Pfam
  
SMART
  
PROSITE
  
PRINTS