CPLM 1.0 - Compendium of Protein Lysine Modification
TagContent
CPLM ID CPLM-010566
UniProt Accession
Genbank Protein ID
Genbank Nucleotide ID
Protein Name
 Histone H3.3 
Protein Synonyms/Alias
  
Gene Name
 H3F3A; H3F3B 
Gene Synonyms/Alias
 H3.3A; H3F3; PP781; H3.3B 
Created Date
 July 27, 2013 
Organism
 Homo sapiens (Human) 
NCBI Taxa ID
 9606 
Lysine Modification
Position
Peptide
Type
References
5***MARTKQTARKSTacetylation[1, 2]
5***MARTKQTARKSTmethylation[3]
10RTKQTARKSTGGKAPacetylation[1, 2, 4]
10RTKQTARKSTGGKAPmethylation[3]
15ARKSTGGKAPRKQLAacetylation[1, 2, 5, 6, 7, 8]
15ARKSTGGKAPRKQLAmethylation[3]
19TGGKAPRKQLATKAAacetylation[1, 2, 5, 8]
19TGGKAPRKQLATKAAmethylation[3]
19TGGKAPRKQLATKAAubiquitination[9, 10, 11]
24PRKQLATKAARKSAPacetylation[1, 2, 5, 8]
24PRKQLATKAARKSAPmethylation[3]
24PRKQLATKAARKSAPsumoylation[12]
24PRKQLATKAARKSAPubiquitination[9, 10, 11]
28LATKAARKSAPSTGGacetylation[13, 14]
28LATKAARKSAPSTGGmethylation[3]
28LATKAARKSAPSTGGubiquitination[11, 15]
37APSTGGVKKPHRYRPacetylation[2, 13, 14]
37APSTGGVKKPHRYRPmethylation[3]
37APSTGGVKKPHRYRPubiquitination[11, 15, 16, 17]
38PSTGGVKKPHRYRPGmethylation[3]
38PSTGGVKKPHRYRPGubiquitination[17]
57REIRRYQKSTELLIRacetylation[2, 4, 18]
57REIRRYQKSTELLIRmethylation[3]
57REIRRYQKSTELLIRubiquitination[9, 10, 11]
65STELLIRKLPFQRLVmethylation[3]
80REIAQDFKTDLRFQSacetylation[2]
80REIAQDFKTDLRFQSmethylation[3]
80REIAQDFKTDLRFQSubiquitination[9, 10, 11]
123KRVTIMPKDIQLARRmethylation[3]
123KRVTIMPKDIQLARRubiquitination[9, 10, 11]
Reference
 [1] Patterns of histone acetylation.
 Thorne AW, Kmiciek D, Mitchelson K, Sautiere P, Crane-Robinson C.
 Eur J Biochem. 1990 Nov 13;193(3):701-13. [PMID: 2249688]
 [2] Organismal differences in post-translational modifications in histones H3 and H4.
 Garcia BA, Hake SB, Diaz RL, Kauer M, Morris SA, Recht J, Shabanowitz J, Mishra N, Strahl BD, Allis CD, Hunt DF.
 J Biol Chem. 2007 Mar 9;282(10):7641-55. [PMID: 17194708]
 [3] Update on activities at the Universal Protein Resource (UniProt) in 2013.
 e="String">UniProt Consortium.
 Nucleic Acids Res. 2013 Jan;41(Database issue):D43-7. [PMID: 23161681]
 [4] Screen for DNA-damage-responsive histone modifications identifies H3K9Ac and H3K56Ac in human cells.
 Tjeertes JV, Miller KM, Jackson SP.
 EMBO J. 2009 Jul 8;28(13):1878-89. [PMID: 19407812]
 [5] Overlapping but distinct patterns of histone acetylation by the human coactivators p300 and PCAF within nucleosomal substrates.
 Schiltz RL, Mizzen CA, Vassilev A, Cook RG, Allis CD, Nakatani Y.
 J Biol Chem. 1999 Jan 15;274(3):1189-92. [PMID: 9880483]
 [6] Tip60 acetylates six lysines of a specific class in core histones in vitro.
 Kimura A, Horikoshi M.
 Genes Cells. 1998 Dec;3(12):789-800. [PMID: 10096020]
 [7] Elongator is a histone H3 and H4 acetyltransferase important for normal histone acetylation levels in vivo.
 Winkler GS, Kristjuhan A, Erdjument-Bromage H, Tempst P, Svejstrup JQ.
 Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):3517-22. [PMID: 11904415]
 [8] Analysis of dynamic changes in post-translational modifications of human histones during cell cycle by mass spectrometry.
 Bonenfant D, Towbin H, Coulot M, Schindler P, Mueller DR, van Oostrum J.
 Mol Cell Proteomics. 2007 Nov;6(11):1917-32. [PMID: 17644761]
 [9] A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles.
 Wagner SA, Beli P, Weinert BT, Nielsen ML, Cox J, Mann M, Choudhary C.
 Mol Cell Proteomics. 2011 Oct;10(10):M111.013284. [PMID: 21890473]
 [10] Methods for quantification of in vivo changes in protein ubiquitination following proteasome and deubiquitinase inhibition.
 Udeshi ND, Mani DR, Eisenhaure T, Mertins P, Jaffe JD, Clauser KR, Hacohen N, Carr SA.
 Mol Cell Proteomics. 2012 May;11(5):148-59. [PMID: 22505724]
 [11] Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization.
 Sarraf SA, Raman M, Guarani-Pereira V, Sowa ME, Huttlin EL, Gygi SP, Harper JW.
 Nature. 2013 Apr 18;496(7445):372-6. [PMID: 23503661]
 [12] Targeted identification of SUMOylation sites in human proteins using affinity enrichment and paralog-specific reporter ions.
 Lamoliatte F, Bonneil E, Durette C, Caron-Lizotte O, Wildemann D, Zerweck J, Wenschuh H, Thibault P.
 Mol Cell Proteomics. 2013 Jun 7;. [PMID: 23750026]
 [13] Substrate and functional diversity of lysine acetylation revealed by a proteomics survey.
 Kim SC, Sprung R, Chen Y, Xu Y, Ball H, Pei J, Cheng T, Kho Y, Xiao H, Xiao L, Grishin NV, White M, Yang XJ, Zhao Y.
 Mol Cell. 2006 Aug;23(4):607-18. [PMID: 16916647]
 [14] Lysine acetylation targets protein complexes and co-regulates major cellular functions.
 Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M.
 Science. 2009 Aug 14;325(5942):834-40. [PMID: 19608861]
 [15] Systematic and quantitative assessment of the ubiquitin-modified proteome.
 Kim W, Bennett EJ, Huttlin EL, Guo A, Li J, Possemato A, Sowa ME, Rad R, Rush J, Comb MJ, Harper JW, Gygi SP.
 Mol Cell. 2011 Oct 21;44(2):325-40. [PMID: 21906983]
 [16] Proteomic analyses reveal divergent ubiquitylation site patterns in murine tissues.
 Wagner SA, Beli P, Weinert BT, Schölz C, Kelstrup CD, Young C, Nielsen ML, Olsen JV, Brakebusch C, Choudhary C.
 Mol Cell Proteomics. 2012 Dec;11(12):1578-85. [PMID: 22790023]
 [17] Refined preparation and use of anti-diglycine remnant (K-ε-GG) antibody enables routine quantification of 10,000s of ubiquitination sites in single proteomics experiments.
 Udeshi ND, Svinkina T, Mertins P, Kuhn E, Mani DR, Qiao JW, Carr SA.
 Mol Cell Proteomics. 2013 Mar;12(3):825-31. [PMID: 23266961]
 [18] The type III histone deacetylase Sirt1 protein suppresses p300-mediated histone H3 lysine 56 acetylation at Bclaf1 promoter to inhibit T cell activation.
 Kong S, Kim SJ, Sandal B, Lee SM, Gao B, Zhang DD, Fang D.
 J Biol Chem. 2011 May 13;286(19):16967-75. [PMID: 21454709
Functional Description
 Variant histone H3 which replaces conventional H3 in a wide range of nucleosomes in active genes. Constitutes the predominant form of histone H3 in non-dividing cells and is incorporated into chromatin independently of DNA synthesis. Deposited at sites of nucleosomal displacement throughout transcribed genes, suggesting that it represents an epigenetic imprint of transcriptionally active chromatin. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. 
Sequence Annotation
 MOD_RES 3 3 Asymmetric dimethylarginine; by PRMT6.
 MOD_RES 4 4 Phosphothreonine; by GSG2.
 MOD_RES 5 5 Allysine; alternate.
 MOD_RES 5 5 N6,N6,N6-trimethyllysine; alternate.
 MOD_RES 5 5 N6,N6-dimethyllysine; alternate.
 MOD_RES 5 5 N6-acetyllysine; alternate.
 MOD_RES 5 5 N6-crotonyl-L-lysine; alternate.
 MOD_RES 5 5 N6-methyllysine; alternate.
 MOD_RES 7 7 Phosphothreonine; by PKC.
 MOD_RES 9 9 Citrulline; alternate.
 MOD_RES 9 9 Symmetric dimethylarginine; by PRMT5;
 MOD_RES 10 10 N6,N6,N6-trimethyllysine; alternate.
 MOD_RES 10 10 N6,N6-dimethyllysine; alternate.
 MOD_RES 10 10 N6-acetyllysine; alternate.
 MOD_RES 10 10 N6-crotonyl-L-lysine; alternate.
 MOD_RES 10 10 N6-methyllysine; alternate.
 MOD_RES 11 11 Phosphoserine; by AURKB, AURKC, RPS6KA3,
 MOD_RES 12 12 Phosphothreonine; by PKC.
 MOD_RES 15 15 N6-acetyllysine.
 MOD_RES 18 18 Asymmetric dimethylarginine; by CARM1;
 MOD_RES 18 18 Citrulline; alternate.
 MOD_RES 19 19 N6-acetyllysine; alternate.
 MOD_RES 19 19 N6-crotonyl-L-lysine; alternate.
 MOD_RES 19 19 N6-methyllysine; alternate.
 MOD_RES 24 24 N6-acetyllysine; alternate.
 MOD_RES 24 24 N6-crotonyl-L-lysine; alternate.
 MOD_RES 24 24 N6-methyllysine; alternate.
 MOD_RES 28 28 N6,N6,N6-trimethyllysine; alternate.
 MOD_RES 28 28 N6,N6-dimethyllysine; alternate.
 MOD_RES 28 28 N6-acetyllysine; alternate.
 MOD_RES 28 28 N6-crotonyl-L-lysine; alternate.
 MOD_RES 28 28 N6-methyllysine; alternate.
 MOD_RES 29 29 Phosphoserine; by AURKB, AURKC and
 MOD_RES 32 32 Phosphoserine.
 MOD_RES 37 37 N6,N6,N6-trimethyllysine; alternate.
 MOD_RES 37 37 N6,N6-dimethyllysine; alternate.
 MOD_RES 37 37 N6-acetyllysine; alternate.
 MOD_RES 37 37 N6-methyllysine; alternate.
 MOD_RES 38 38 N6-methyllysine (By similarity).
 MOD_RES 42 42 Phosphotyrosine.
 MOD_RES 57 57 N6,N6,N6-trimethyllysine; alternate.
 MOD_RES 57 57 N6-acetyllysine; alternate.
 MOD_RES 57 57 N6-crotonyl-L-lysine; alternate.
 MOD_RES 57 57 N6-methyllysine; by EHMT2; alternate.
 MOD_RES 58 58 Phosphoserine.
 MOD_RES 65 65 N6-methyllysine.
 MOD_RES 80 80 N6,N6,N6-trimethyllysine; alternate (By
 MOD_RES 80 80 N6,N6-dimethyllysine; alternate.
 MOD_RES 80 80 N6-acetyllysine; alternate.
 MOD_RES 80 80 N6-methyllysine; alternate.
 MOD_RES 81 81 Phosphothreonine.
 MOD_RES 108 108 Phosphothreonine (By similarity).
 MOD_RES 123 123 N6-methyllysine.  
Keyword
 3D-structure; Acetylation; Chromosome; Citrullination; Complete proteome; Direct protein sequencing; DNA-binding; Methylation; Nucleosome core; Nucleus; Phosphoprotein; Reference proteome; Ubl conjugation. 
Sequence Source
 UniProt (SWISSPROT/TrEMBL); GenBank; EMBL 
Protein Length
 136 AA 
Protein Sequence
MARTKQTARK STGGKAPRKQ LATKAARKSA PSTGGVKKPH RYRPGTVALR EIRRYQKSTE 60
LLIRKLPFQR LVREIAQDFK TDLRFQSAAI GALQEASEAY LVGLFEDTNL CAIHAKRVTI 120
MPKDIQLARR IRGERA 136 
Gene Ontology
 GO:0005576; C:extracellular region; TAS:Reactome.
 GO:0005654; C:nucleoplasm; TAS:Reactome.
 GO:0000786; C:nucleosome; IEA:UniProtKB-KW.
 GO:0003677; F:DNA binding; IEA:UniProtKB-KW.
 GO:0007596; P:blood coagulation; TAS:Reactome.
 GO:0007420; P:brain development; IEA:Compara.
 GO:0006334; P:nucleosome assembly; IEA:InterPro.
 GO:0009725; P:response to hormone stimulus; IEA:Compara. 
Interpro
 IPR009072; Histone-fold.
 IPR007125; Histone_core_D.
 IPR000164; Histone_H3. 
Pfam
 PF00125; Histone 
SMART
 SM00428; H3 
PROSITE
 PS00322; HISTONE_H3_1
 PS00959; HISTONE_H3_2 
PRINTS
 PR00622; HISTONEH3.