[1] Pseudo-esterase activity of human albumin: slow turnover on tyrosine 411 and stable acetylation of 82 residues including 59 lysines.
Lockridge O, Xue W, Gaydess A, Grigoryan H, Ding SJ, Schopfer LM, Hinrichs SH, Masson P.
J Biol Chem. 2008 Aug 15;283(33):22582-90. [
PMID: 18577514]
[2] Proteomic profiling of nonenzymatically glycated proteins in human plasma and erythrocyte membranes.
Zhang Q, Tang N, Schepmoes AA, Phillips LS, Smith RD, Metz TO.
J Proteome Res. 2008 May;7(5):2025-32. [
PMID: 18396901]
[3] Quantitative analysis of glycation patterns in human serum albumin using 16O/18O-labeling and MALDI-TOF MS.
Barnaby OS, Cerny RL, Clarke W, Hage DS.
Clin Chim Acta. 2011 Aug 17;412(17-18):1606-15. [
PMID: 21601565]
[4] Nonenzymatic glycosylation of albumin in vivo. Identification of multiple glycosylated sites.
Iberg N, Flückiger R.
J Biol Chem. 1986 Oct 15;261(29):13542-5. [
PMID: 3759977]
[5] Screening and sequencing of glycated proteins by neutral loss scan LC/MS/MS method.
Gadgil HS, Bondarenko PV, Treuheit MJ, Ren D.
Anal Chem. 2007 Aug 1;79(15):5991-9. [
PMID: 17571855]
[6] Enrichment of Amadori products derived from the nonenzymatic glycation of proteins using microscale boronate affinity chromatography.
Takátsy A, Böddi K, Nagy L, Nagy G, Szabó S, Markó L, Wittmann I, Ohmacht R, Ringer T, Bonn GK, Gjerde D, Szabó Z.
Anal Biochem. 2009 Oct 1;393(1):8-22. [
PMID: 19524544]
[7] Identification and relative quantification of specific glycation sites in human serum albumin.
Frolov A, Hoffmann R.
Anal Bioanal Chem. 2010 Jul;397(6):2349-56. [
PMID: 20496030]
[8] Enzymatic digestion and mass spectrometry in the study of advanced glycation end products/peptides.
Lapolla A, Fedele D, Reitano R, Aricò NC, Seraglia R, Traldi P, Marotta E, Tonani R.
J Am Soc Mass Spectrom. 2004 Apr;15(4):496-509. [
PMID: 15047055]
[9] Esterase-like activity of human serum albumin: structure-activity relationships for the reactions with phenyl acetates and p-nitrophenyl esters.
Kurono Y, Maki T, Yotsuyanagi T, Ikeda K.
Chem Pharm Bull (Tokyo). 1979 Nov;27(11):2781-6. [
PMID: 527146]
[10] Positions in human serum albumin which involve the indole binding site. Sequence of 107-residue fragment.
Gambhir KK, McMenamy RH, Watson F.
J Biol Chem. 1975 Sep 10;250(17):6711-9. [
PMID: 1158878]
[11] Structural changes in human serum albumin induced by ingestion of acetylsalicylic acid.
Hawkins D, Pinckard RN, Crawford IP, Farr RS.
J Clin Invest. 1969 Mar;48(3):536-42. [
PMID: 5773090]
[12] Studies of the chemical selectivity of hapten, reactivity, and skin sensitization potency. 2. nmr studies of the covalent binding of the (13)c-labeled skin sensitizers 2-[13C]- and 3-[13C]hex-1-ene- and 3-[13C]hexane-1,3-sultones to human serum albumin.
Meschkat E, Barratt MD, Lepoittevin J.
Chem Res Toxicol. 2001 Jan;14(1):118-26. [
PMID: 11170515]
[13] A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles.
Wagner SA, Beli P, Weinert BT, Nielsen ML, Cox J, Mann M, Choudhary C.
Mol Cell Proteomics. 2011 Oct;10(10):M111.013284. [
PMID: 21890473]
[14] Regulation of cellular metabolism by protein lysine acetylation.
Zhao S, Xu W, Jiang W, Yu W, Lin Y, Zhang T, Yao J, Zhou L, Zeng Y, Li H, Li Y, Shi J, An W, Hancock SM, He F, Qin L, Chin J, Yang P, Chen X, Lei Q, Xiong Y, Guan KL.
Science. 2010 Feb 19;327(5968):1000-4. [
PMID: 20167786]