CPLM 1.0 - Compendium of Protein Lysine Modification
TagContent
CPLM ID CPLM-021358
UniProt Accession
Genbank Protein ID
Genbank Nucleotide ID
Protein Name
 Charged multivesicular body protein 4b 
Protein Synonyms/Alias
 Chromatin-modifying protein 4b; CHMP4b; SNF7 homolog associated with Alix 1; SNF7-2; hSnf7-2; Vacuolar protein sorting-associated protein 32-2; Vps32-2; hVps32-2 
Gene Name
 CHMP4B 
Gene Synonyms/Alias
 C20orf178; SHAX1 
Created Date
 July 27, 2013 
Organism
 Homo sapiens (Human) 
NCBI Taxa ID
 9606 
Lysine Modification
Position
Peptide
Type
References
6**MSVFGKLFGAGGGacetylation[1, 2, 3]
6**MSVFGKLFGAGGGubiquitination[4, 5, 6, 7]
14LFGAGGGKAGKGGPTubiquitination[7]
17AGGGKAGKGGPTPQEubiquitination[6]
107NTNTEVLKNMGYAAKubiquitination[5, 6, 8, 9, 10]
114KNMGYAAKAMKAAHDacetylation[1]
202PSIALPSKPAKKKEEubiquitination[9, 11]
Reference
 [1] Lysine acetylation targets protein complexes and co-regulates major cellular functions.
 Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M.
 Science. 2009 Aug 14;325(5942):834-40. [PMID: 19608861]
 [2] Proteomic investigations reveal a role for RNA processing factor THRAP3 in the DNA damage response.
 Beli P, Lukashchuk N, Wagner SA, Weinert BT, Olsen JV, Baskcomb L, Mann M, Jackson SP, Choudhary C.
 Mol Cell. 2012 Apr 27;46(2):212-25. [PMID: 22424773]
 [3] Proteomic investigations of lysine acetylation identify diverse substrates of mitochondrial deacetylase sirt3.
 Sol EM, Wagner SA, Weinert BT, Kumar A, Kim HS, Deng CX, Choudhary C.
 PLoS One. 2012;7(12):e50545. [PMID: 23236377]
 [4] Methods for quantification of in vivo changes in protein ubiquitination following proteasome and deubiquitinase inhibition.
 Udeshi ND, Mani DR, Eisenhaure T, Mertins P, Jaffe JD, Clauser KR, Hacohen N, Carr SA.
 Mol Cell Proteomics. 2012 May;11(5):148-59. [PMID: 22505724]
 [5] Systems-wide analysis of ubiquitylation dynamics reveals a key role for PAF15 ubiquitylation in DNA-damage bypass.
 Povlsen LK, Beli P, Wagner SA, Poulsen SL, Sylvestersen KB, Poulsen JW, Nielsen ML, Bekker-Jensen S, Mailand N, Choudhary C.
 Nat Cell Biol. 2012 Oct;14(10):1089-98. [PMID: 23000965]
 [6] Refined preparation and use of anti-diglycine remnant (K-ε-GG) antibody enables routine quantification of 10,000s of ubiquitination sites in single proteomics experiments.
 Udeshi ND, Svinkina T, Mertins P, Kuhn E, Mani DR, Qiao JW, Carr SA.
 Mol Cell Proteomics. 2013 Mar;12(3):825-31. [PMID: 23266961]
 [7] Integrated proteomic analysis of post-translational modifications by serial enrichment.
 Mertins P, Qiao JW, Patel J, Udeshi ND, Clauser KR, Mani DR, Burgess MW, Gillette MA, Jaffe JD, Carr SA.
 Nat Methods. 2013 Jul;10(7):634-7. [PMID: 23749302]
 [8] A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles.
 Wagner SA, Beli P, Weinert BT, Nielsen ML, Cox J, Mann M, Choudhary C.
 Mol Cell Proteomics. 2011 Oct;10(10):M111.013284. [PMID: 21890473]
 [9] Systematic and quantitative assessment of the ubiquitin-modified proteome.
 Kim W, Bennett EJ, Huttlin EL, Guo A, Li J, Possemato A, Sowa ME, Rad R, Rush J, Comb MJ, Harper JW, Gygi SP.
 Mol Cell. 2011 Oct 21;44(2):325-40. [PMID: 21906983]
 [10] hCKSAAP_UbSite: improved prediction of human ubiquitination sites by exploiting amino acid pattern and properties.
 Chen Z, Zhou Y, Song J, Zhang Z.
 Biochim Biophys Acta. 2013 Aug;1834(8):1461-7. [PMID: 23603789]
 [11] Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization.
 Sarraf SA, Raman M, Guarani-Pereira V, Sowa ME, Huttlin EL, Gygi SP, Harper JW.
 Nature. 2013 Apr 18;496(7445):372-6. [PMID: 23503661
Functional Description
 Probable core component of the endosomal sorting required for transport complex III (ESCRT-III) which is involved in multivesicular bodies (MVBs) formation and sorting of endosomal cargo proteins into MVBs. MVBs contain intraluminal vesicles (ILVs) that are generated by invagination and scission from the limiting membrane of the endosome and mostly are delivered to lysosomes enabling degradation of membrane proteins, such as stimulated growth factor receptors, lysosomal enzymes and lipids. The MVB pathway appears to require the sequential function of ESCRT-O, -I,-II and -III complexes. ESCRT-III proteins mostly dissociate from the invaginating membrane before the ILV is released. The ESCRT machinery also functions in topologically equivalent membrane fission events, such as the terminal stages of cytokinesis and the budding of enveloped viruses (HIV-1 and other lentiviruses). ESCRT-III proteins are believed to mediate the necessary vesicle extrusion and/or membrane fission activities, possibly in conjunction with the AAA ATPase VPS4. When overexpressed, membrane-assembled circular arrays of CHMP4B filaments can promote or stabilize negative curvature and outward budding. Via its interaction with PDCD6IP involved in HIV-1 p6- and p9-dependent virus release. 
Sequence Annotation
 MOD_RES 2 2 N-acetylserine.
 MOD_RES 6 6 N6-acetyllysine.
 MOD_RES 114 114 N6-acetyllysine.
 MOD_RES 184 184 Phosphoserine.
 MOD_RES 223 223 Phosphoserine.  
Keyword
 3D-structure; Acetylation; Cataract; Coiled coil; Complete proteome; Cytoplasm; Direct protein sequencing; Disease mutation; Endosome; Membrane; Phosphoprotein; Protein transport; Reference proteome; Transport. 
Sequence Source
 UniProt (SWISSPROT/TrEMBL); GenBank; EMBL 
Protein Length
 224 AA 
Protein Sequence
MSVFGKLFGA GGGKAGKGGP TPQEAIQRLR DTEEMLSKKQ EFLEKKIEQE LTAAKKHGTK 60
NKRAALQALK RKKRYEKQLA QIDGTLSTIE FQREALENAN TNTEVLKNMG YAAKAMKAAH 120
DNMDIDKVDE LMQDIADQQE LAEEISTAIS KPVGFGEEFD EDELMAELEE LEQEELDKNL 180
LEISGPETVP LPNVPSIALP SKPAKKKEEE DDDMKELENW AGSM 224 
Gene Ontology
 GO:0005829; C:cytosol; TAS:Reactome.
 GO:0031902; C:late endosome membrane; IEA:UniProtKB-SubCell.
 GO:0030496; C:midbody; IDA:FlyBase.
 GO:0016044; P:cellular membrane organization; TAS:Reactome.
 GO:0016197; P:endosomal transport; TAS:Reactome.
 GO:0015031; P:protein transport; IEA:UniProtKB-KW. 
Interpro
 IPR005024; Snf7. 
Pfam
 PF03357; Snf7 
SMART
  
PROSITE
  
PRINTS