[1] Patterns of histone acetylation.
Thorne AW, Kmiciek D, Mitchelson K, Sautiere P, Crane-Robinson C.
Eur J Biochem. 1990 Nov 13;193(3):701-13. [
PMID: 2249688]
[2] Human spleen histone H3. Isolation and amino acid sequence.
Ohe Y, Iwai K.
J Biochem. 1981 Oct;90(4):1205-11. [
PMID: 7309716]
[3] Organismal differences in post-translational modifications in histones H3 and H4.
Garcia BA, Hake SB, Diaz RL, Kauer M, Morris SA, Recht J, Shabanowitz J, Mishra N, Strahl BD, Allis CD, Hunt DF.
J Biol Chem. 2007 Mar 9;282(10):7641-55. [
PMID: 17194708]
[4] Proteome-wide prediction of acetylation substrates.
Basu A, Rose KL, Zhang J, Beavis RC, Ueberheide B, Garcia BA, Chait B, Zhao Y, Hunt DF, Segal E, Allis CD, Hake SB.
Proc Natl Acad Sci U S A. 2009 Aug 18;106(33):13785-90. [
PMID: 19666589]
[5] Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification.
Tan M, Luo H, Lee S, Jin F, Yang JS, Montellier E, Buchou T, Cheng Z, Rousseaux S, Rajagopal N, Lu Z, Ye Z, Zhu Q, Wysocka J, Ye Y, Khochbin S, Ren B, Zhao Y.
Cell. 2011 Sep 16;146(6):1016-28. [
PMID: 21925322]
[6] Identification of novel histone post-translational modifications by peptide mass fingerprinting.
Zhang L, Eugeni EE, Parthun MR, Freitas MA.
Chromosoma. 2003 Aug;112(2):77-86. [
PMID: 12937907]
[7] CpG-binding protein (CXXC finger protein 1) is a component of the mammalian Set1 histone H3-Lys4 methyltransferase complex, the analogue of the yeast Set1/COMPASS complex.
Lee JH, Skalnik DG.
J Biol Chem. 2005 Dec 16;280(50):41725-31. [
PMID: 16253997]
[8] Update on activities at the Universal Protein Resource (UniProt) in 2013.
e="String">UniProt Consortium.
Nucleic Acids Res. 2013 Jan;41(Database issue):D43-7. [
PMID: 23161681]
[9] Quantitative proteomic analysis of post-translational modifications of human histones.
Beck HC, Nielsen EC, Matthiesen R, Jensen LH, Sehested M, Finn P, Grauslund M, Hansen AM, Jensen ON.
Mol Cell Proteomics. 2006 Jul;5(7):1314-25. [
PMID: 16627869]
[10] Substrate and functional diversity of lysine acetylation revealed by a proteomics survey.
Kim SC, Sprung R, Chen Y, Xu Y, Ball H, Pei J, Cheng T, Kho Y, Xiao H, Xiao L, Grishin NV, White M, Yang XJ, Zhao Y.
Mol Cell. 2006 Aug;23(4):607-18. [
PMID: 16916647]
[11] Screen for DNA-damage-responsive histone modifications identifies H3K9Ac and H3K56Ac in human cells.
Tjeertes JV, Miller KM, Jackson SP.
EMBO J. 2009 Jul 8;28(13):1878-89. [
PMID: 19407812]
[12] Lysine acetylation targets protein complexes and co-regulates major cellular functions.
Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M.
Science. 2009 Aug 14;325(5942):834-40. [
PMID: 19608861]
[13] Activator-dependent p300 acetylation of chromatin in vitro: enhancement of transcription by disruption of repressive nucleosome-nucleosome interactions.
Szerlong HJ, Prenni JE, Nyborg JK, Hansen JC.
J Biol Chem. 2010 Oct 15;285(42):31954-64. [
PMID: 20720004]
[14] Identification of methylation and acetylation sites on mouse histone H3 using matrix-assisted laser desorption/ionization time-of-flight and nanoelectrospray ionization tandem mass spectrometry.
Cocklin RR, Wang M.
J Protein Chem. 2003 May;22(4):327-34. [
PMID: 13678296]
[15] Mass spectrometry-based identification and characterisation of lysine and arginine methylation in the human proteome.
Bremang M, Cuomo A, Agresta AM, Stugiewicz M, Spadotto V, Bonaldi T.
Mol Biosyst. 2013 Jul 30;9(9):2231-47. [
PMID: 23748837]
[16] Overlapping but distinct patterns of histone acetylation by the human coactivators p300 and PCAF within nucleosomal substrates.
Schiltz RL, Mizzen CA, Vassilev A, Cook RG, Allis CD, Nakatani Y.
J Biol Chem. 1999 Jan 15;274(3):1189-92. [
PMID: 9880483]
[17] Tip60 acetylates six lysines of a specific class in core histones in vitro.
Kimura A, Horikoshi M.
Genes Cells. 1998 Dec;3(12):789-800. [
PMID: 10096020]
[18] Elongator is a histone H3 and H4 acetyltransferase important for normal histone acetylation levels in vivo.
Winkler GS, Kristjuhan A, Erdjument-Bromage H, Tempst P, Svejstrup JQ.
Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):3517-22. [
PMID: 11904415]
[19] Analysis of dynamic changes in post-translational modifications of human histones during cell cycle by mass spectrometry.
Bonenfant D, Towbin H, Coulot M, Schindler P, Mueller DR, van Oostrum J.
Mol Cell Proteomics. 2007 Nov;6(11):1917-32. [
PMID: 17644761]
[20] Akt kinase targets the association of CBP with histone H3 to regulate the acetylation of lysine K18.
Liu Y, Xing ZB, Zhang JH, Fang Y.
FEBS Lett. 2013 Apr 2;587(7):847-53. [
PMID: 23434580]
[21] Targeted identification of SUMOylation sites in human proteins using affinity enrichment and paralog-specific reporter ions.
Lamoliatte F, Bonneil E, Durette C, Caron-Lizotte O, Wildemann D, Zerweck J, Wenschuh H, Thibault P.
Mol Cell Proteomics. 2013 Jun 7;. [
PMID: 23750026]
[22] Systems-wide analysis of ubiquitylation dynamics reveals a key role for PAF15 ubiquitylation in DNA-damage bypass.
Povlsen LK, Beli P, Wagner SA, Poulsen SL, Sylvestersen KB, Poulsen JW, Nielsen ML, Bekker-Jensen S, Mailand N, Choudhary C.
Nat Cell Biol. 2012 Oct;14(10):1089-98. [
PMID: 23000965]
[23] Identification and characterization of propionylation at histone H3 lysine 23 in mammalian cells.
Liu B, Lin Y, Darwanto A, Song X, Xu G, Zhang K.
J Biol Chem. 2009 Nov 20;284(47):32288-95. [
PMID: 19801601]
[24] A novel proteomics approach to identify SUMOylated proteins and their modification sites in human cells.
Galisson F, Mahrouche L, Courcelles M, Bonneil E, Meloche S, Chelbi-Alix MK, Thibault P.
Mol Cell Proteomics. 2011 Feb;10(2):M110.004796. [
PMID: 21098080]
[25] Proteomic investigations reveal a role for RNA processing factor THRAP3 in the DNA damage response.
Beli P, Lukashchuk N, Wagner SA, Weinert BT, Olsen JV, Baskcomb L, Mann M, Jackson SP, Choudhary C.
Mol Cell. 2012 Apr 27;46(2):212-25. [
PMID: 22424773]
[26] Proteomic investigations of lysine acetylation identify diverse substrates of mitochondrial deacetylase sirt3.
Sol EM, Wagner SA, Weinert BT, Kumar A, Kim HS, Deng CX, Choudhary C.
PLoS One. 2012;7(12):e50545. [
PMID: 23236377]
[27] Large-scale global identification of protein lysine methylation in vivo.
Cao XJ, Arnaudo AM, Garcia BA.
Epigenetics. 2013 May 1;8(5):477-85. [
PMID: 23644510]
[28] Systematic and quantitative assessment of the ubiquitin-modified proteome.
Kim W, Bennett EJ, Huttlin EL, Guo A, Li J, Possemato A, Sowa ME, Rad R, Rush J, Comb MJ, Harper JW, Gygi SP.
Mol Cell. 2011 Oct 21;44(2):325-40. [
PMID: 21906983]
[29] Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization.
Sarraf SA, Raman M, Guarani-Pereira V, Sowa ME, Huttlin EL, Gygi SP, Harper JW.
Nature. 2013 Apr 18;496(7445):372-6. [
PMID: 23503661]
[30] Refined preparation and use of anti-diglycine remnant (K-ε-GG) antibody enables routine quantification of 10,000s of ubiquitination sites in single proteomics experiments.
Udeshi ND, Svinkina T, Mertins P, Kuhn E, Mani DR, Qiao JW, Carr SA.
Mol Cell Proteomics. 2013 Mar;12(3):825-31. [
PMID: 23266961]
[31] The type III histone deacetylase Sirt1 protein suppresses p300-mediated histone H3 lysine 56 acetylation at Bclaf1 promoter to inhibit T cell activation.
Kong S, Kim SJ, Sandal B, Lee SM, Gao B, Zhang DD, Fang D.
J Biol Chem. 2011 May 13;286(19):16967-75. [
PMID: 21454709]
[32] Ubiquitin ligase substrate identification through quantitative proteomics at both the protein and peptide levels.
Lee KA, Hammerle LP, Andrews PS, Stokes MP, Mustelin T, Silva JC, Black RA, Doedens JR.
J Biol Chem. 2011 Dec 2;286(48):41530-8. [
PMID: 21987572]
[33] Regulation of cellular metabolism by protein lysine acetylation.
Zhao S, Xu W, Jiang W, Yu W, Lin Y, Zhang T, Yao J, Zhou L, Zeng Y, Li H, Li Y, Shi J, An W, Hancock SM, He F, Qin L, Chin J, Yang P, Chen X, Lei Q, Xiong Y, Guan KL.
Science. 2010 Feb 19;327(5968):1000-4. [
PMID: 20167786]
[34] Histone H2B ubiquitylation controls processive methylation but not monomethylation by Dot1 and Set1.
Shahbazian MD, Zhang K, Grunstein M.
Mol Cell. 2005 Jul 22;19(2):271-7. [
PMID: 16039595]
[35] Acetylation of histone H3 at the nucleosome dyad alters DNA-histone binding.
Manohar M, Mooney AM, North JA, Nakkula RJ, Picking JW, Edon A, Fishel R, Poirier MG, Ottesen JJ.
J Biol Chem. 2009 Aug 28;284(35):23312-21. [
PMID: 19520870]