CPLM 1.0 - Compendium of Protein Lysine Modification
TagContent
CPLM ID CPLM-005331
UniProt Accession
Genbank Protein ID
Genbank Nucleotide ID
Protein Name
 DNA-directed RNA polymerase II subunit RPB1 
Protein Synonyms/Alias
 RNA polymerase II subunit B1; DNA-directed RNA polymerase II subunit A; DNA-directed RNA polymerase III largest subunit; RNA-directed RNA polymerase II subunit RPB1 
Gene Name
 POLR2A 
Gene Synonyms/Alias
 POLR2 
Created Date
 July 27, 2013 
Organism
 Homo sapiens (Human) 
NCBI Taxa ID
 9606 
Lysine Modification
Position
Peptide
Type
References
32VLSPDELKRMSVTEGubiquitination[1, 2, 3, 4, 5]
42SVTEGGIKYPETTEGubiquitination[1, 4, 6, 7, 8]
92FGHIELAKPVFHVGFubiquitination[4]
116CVCFFCSKLLVDSNNubiquitination[2, 4]
125LVDSNNPKIKDILAKubiquitination[4]
127DSNNPKIKDILAKSKubiquitination[4, 8]
132KIKDILAKSKGQPKKubiquitination[4]
149THVYDLCKGKNICEGubiquitination[2, 4, 8]
151VYDLCKGKNICEGGEubiquitination[2, 4]
163GGEEMDNKFGVEQPEubiquitination[2, 3, 4]
177EGDEDLTKEKGHGGCubiquitination[1, 2, 3, 5, 8]
179DEDLTKEKGHGGCGRubiquitination[4]
203LELYAEWKHVNEDSQubiquitination[1, 4]
212VNEDSQEKKILLSPEubiquitination[1]
213NEDSQEKKILLSPERubiquitination[3, 4]
226ERVHEIFKRISDEECubiquitination[4, 8]
279NQDDLTHKLADIVKIubiquitination[1, 2, 4, 8]
285HKLADIVKINNQLRRacetylation[9, 10]
285HKLADIVKINNQLRRubiquitination[1, 2, 4, 5, 8, 11]
337QKSGRPLKSLKQRLKubiquitination[2]
417NSQYPGAKYIIRDNGubiquitination[1, 2, 4, 5, 8, 11]
434IDLRFHPKPSDLHLQubiquitination[4]
445LHLQTGYKVERHMCDubiquitination[4, 8]
466NRQPTLHKMSMMGHRubiquitination[4]
581VPQPAILKPRPLWTGubiquitination[4]
619DEDSGPYKHISPGDTubiquitination[1, 2, 4, 5, 8, 11]
627HISPGDTKVVVENGEubiquitination[2]
642LIMGILCKKSLGTSAubiquitination[2, 4, 11]
643IMGILCKKSLGTSAGubiquitination[1, 4, 8]
707QDIQNTIKKAKQDVIubiquitination[1, 2, 4, 5, 6, 7, 8]
708DIQNTIKKAKQDVIEubiquitination[2, 4]
710QNTIKKAKQDVIEVIubiquitination[1, 2, 3, 4, 5, 8, 11]
719DVIEVIEKAHNNELEubiquitination[1, 2, 4, 8]
751ILNDARDKTGSSAQKubiquitination[1, 2, 4, 6, 7, 8, 12]
758KTGSSAQKSLSEYNNubiquitination[1, 2, 3, 4, 5, 6, 7, 8, 12, 13]
767LSEYNNFKSMVVSGAubiquitination[1, 2, 3, 4, 5, 6, 7, 8]
775SMVVSGAKGSKINISubiquitination[1, 4, 5]
778VSGAKGSKINISQVIubiquitination[4]
796GQQNVEGKRIPFGFKubiquitination[1, 2, 3, 4, 5, 6, 7, 8, 11]
803KRIPFGFKHRTLPHFubiquitination[4]
812RTLPHFIKDDYGPESubiquitination[1, 2, 4, 5, 6, 7, 8]
853GLIDTAVKTAETGYIubiquitination[1, 2, 3, 4, 5, 8, 11]
866YIQRRLIKSMESVMVubiquitination[1, 2, 4, 5, 6, 7, 8, 11]
874SMESVMVKYDATVRNubiquitination[1, 2, 4]
910FQNLATLKPSNKAFEubiquitination[1, 2, 4, 5, 8, 12]
914ATLKPSNKAFEKKFRubiquitination[1, 2, 3, 4, 5, 8, 12]
918PSNKAFEKKFRFDYTubiquitination[1, 2, 4, 5]
919SNKAFEKKFRFDYTNubiquitination[4]
940TLQEDLVKDVLSNAHubiquitination[1, 2, 4, 5, 8, 11]
976IFPTGDSKVVLPCNLubiquitination[2, 3, 4, 8, 11]
992RMIWNAQKIFHINPRubiquitination[2, 3, 4, 5, 8]
1008PSDLHPIKVVEGVKEubiquitination[1, 2, 3, 4, 5, 6, 7, 8, 13]
1014IKVVEGVKELSKKLVubiquitination[1, 2, 4, 5, 8]
1019GVKELSKKLVIVNGDubiquitination[1, 3, 4, 5, 8]
1125TLGVPRLKELINISKubiquitination[1, 2, 3, 4, 6, 7, 8, 11]
1132KELINISKKPKTPSLubiquitination[2, 4, 8]
1133ELINISKKPKTPSLTubiquitination[4]
1135INISKKPKTPSLTVFubiquitination[4]
1155ARDAERAKDILCRLEubiquitination[4, 8]
1225RKHMTDRKLTMEQIAubiquitination[1, 2, 3, 4, 8]
1254FNDDNAEKLVLRIRIubiquitination[2, 4, 11]
1268IMNSDENKMQEEEEVubiquitination[1, 2, 4, 5]
1278EEEEVVDKMDDDVFLubiquitination[1, 2, 4, 8]
1317HLPQTDNKKKIIITEubiquitination[1, 4]
1318LPQTDNKKKIIITEDubiquitination[4]
1319PQTDNKKKIIITEDGubiquitination[1, 4, 8, 13]
1350LMRVLSEKDVDPVRTubiquitination[1, 2, 3, 4, 5, 8, 11]
1429QDTGPLMKCSFEETVubiquitination[2]
1479DLLLDAEKCKYGMEIubiquitination[2]
1922TYSPTSPKYSPTSPTacetylation[14]
Reference
 [1] Systematic and quantitative assessment of the ubiquitin-modified proteome.
 Kim W, Bennett EJ, Huttlin EL, Guo A, Li J, Possemato A, Sowa ME, Rad R, Rush J, Comb MJ, Harper JW, Gygi SP.
 Mol Cell. 2011 Oct 21;44(2):325-40. [PMID: 21906983]
 [2] Global identification of modular cullin-RING ligase substrates.
 Emanuele MJ, Elia AE, Xu Q, Thoma CR, Izhar L, Leng Y, Guo A, Chen YN, Rush J, Hsu PW, Yen HC, Elledge SJ.
 Cell. 2011 Oct 14;147(2):459-74. [PMID: 21963094]
 [3] Methods for quantification of in vivo changes in protein ubiquitination following proteasome and deubiquitinase inhibition.
 Udeshi ND, Mani DR, Eisenhaure T, Mertins P, Jaffe JD, Clauser KR, Hacohen N, Carr SA.
 Mol Cell Proteomics. 2012 May;11(5):148-59. [PMID: 22505724]
 [4] Refined preparation and use of anti-diglycine remnant (K-ε-GG) antibody enables routine quantification of 10,000s of ubiquitination sites in single proteomics experiments.
 Udeshi ND, Svinkina T, Mertins P, Kuhn E, Mani DR, Qiao JW, Carr SA.
 Mol Cell Proteomics. 2013 Mar;12(3):825-31. [PMID: 23266961]
 [5] Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization.
 Sarraf SA, Raman M, Guarani-Pereira V, Sowa ME, Huttlin EL, Gygi SP, Harper JW.
 Nature. 2013 Apr 18;496(7445):372-6. [PMID: 23503661]
 [6] A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles.
 Wagner SA, Beli P, Weinert BT, Nielsen ML, Cox J, Mann M, Choudhary C.
 Mol Cell Proteomics. 2011 Oct;10(10):M111.013284. [PMID: 21890473]
 [7] hCKSAAP_UbSite: improved prediction of human ubiquitination sites by exploiting amino acid pattern and properties.
 Chen Z, Zhou Y, Song J, Zhang Z.
 Biochim Biophys Acta. 2013 Aug;1834(8):1461-7. [PMID: 23603789]
 [8] Integrated proteomic analysis of post-translational modifications by serial enrichment.
 Mertins P, Qiao JW, Patel J, Udeshi ND, Clauser KR, Mani DR, Burgess MW, Gillette MA, Jaffe JD, Carr SA.
 Nat Methods. 2013 Jul;10(7):634-7. [PMID: 23749302]
 [9] Regulation of cellular metabolism by protein lysine acetylation.
 Zhao S, Xu W, Jiang W, Yu W, Lin Y, Zhang T, Yao J, Zhou L, Zeng Y, Li H, Li Y, Shi J, An W, Hancock SM, He F, Qin L, Chin J, Yang P, Chen X, Lei Q, Xiong Y, Guan KL.
 Science. 2010 Feb 19;327(5968):1000-4. [PMID: 20167786]
 [10] Monoclonal antibody cocktail as an enrichment tool for acetylome analysis.
 Shaw PG, Chaerkady R, Zhang Z, Davidson NE, Pandey A.
 Anal Chem. 2011 May 15;83(10):3623-6. [PMID: 21466224]
 [11] Ubiquitin ligase substrate identification through quantitative proteomics at both the protein and peptide levels.
 Lee KA, Hammerle LP, Andrews PS, Stokes MP, Mustelin T, Silva JC, Black RA, Doedens JR.
 J Biol Chem. 2011 Dec 2;286(48):41530-8. [PMID: 21987572]
 [12] Proteome-wide identification of ubiquitylation sites by conjugation of engineered lysine-less ubiquitin.
 Oshikawa K, Matsumoto M, Oyamada K, Nakayama KI.
 J Proteome Res. 2012 Feb 3;11(2):796-807. [PMID: 22053931]
 [13] Systems-wide analysis of ubiquitylation dynamics reveals a key role for PAF15 ubiquitylation in DNA-damage bypass.
 Povlsen LK, Beli P, Wagner SA, Poulsen SL, Sylvestersen KB, Poulsen JW, Nielsen ML, Bekker-Jensen S, Mailand N, Choudhary C.
 Nat Cell Biol. 2012 Oct;14(10):1089-98. [PMID: 23000965]
 [14] Spermidine and resveratrol induce autophagy by distinct pathways converging on the acetylproteome.
 Morselli E, Mariño G, Bennetzen MV, Eisenberg T, Megalou E, Schroeder S, Cabrera S, Bénit P, Rustin P, Criollo A, Kepp O, Galluzzi L, Shen S, Malik SA, Maiuri MC, Horio Y, López-Otín C, Andersen JS, Tavernarakis N, Madeo F, Kroemer G.
 J Cell Biol. 2011 Feb 21;192(4):615-29. [PMID: 21339330
Functional Description
 DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Largest and catalytic component of RNA polymerase II which synthesizes mRNA precursors and many functional non-coding RNAs. Forms the polymerase active center together with the second largest subunit. Pol II is the central component of the basal RNA polymerase II transcription machinery. It is composed of mobile elements that move relative to each other. RPB1 is part of the core element with the central large cleft, the clamp element that moves to open and close the cleft and the jaws that are thought to grab the incoming DNA template. At the start of transcription, a single stranded DNA template strand of the promoter is positioned within the central active site cleft of Pol II. A bridging helix emanates from RPB1 and crosses the cleft near the catalytic site and is thought to promote translocation of Pol II by acting as a ratchet that moves the RNA-DNA hybrid through the active site by switching from straight to bent conformations at each step of nucleotide addition. During transcription elongation, Pol II moves on the template as the transcript elongates. Elongation is influenced by the phosphorylation status of the C-terminal domain (CTD) of Pol II largest subunit (RPB1), which serves as a platform for assembly of factors that regulate transcription initiation, elongation, termination and mRNA processing. Acts as a RNA- dependent RNA polymerase when associated with small delta antigen of Hepatitis delta virus, acting both as a replicate and transcriptase for the viral RNA circular genome. 
Sequence Annotation
 REPEAT 1593 1599 1.
 REPEAT 1600 1606 2; approximate.
 REPEAT 1608 1614 3.
 REPEAT 1615 1621 4.
 REPEAT 1622 1628 5.
 REPEAT 1629 1635 6.
 REPEAT 1636 1642 7.
 REPEAT 1643 1649 8.
 REPEAT 1650 1656 9.
 REPEAT 1657 1663 10.
 REPEAT 1664 1670 11.
 REPEAT 1671 1677 12.
 REPEAT 1678 1684 13.
 REPEAT 1685 1691 14.
 REPEAT 1692 1698 15.
 REPEAT 1699 1705 16.
 REPEAT 1706 1712 17.
 REPEAT 1713 1719 18.
 REPEAT 1720 1726 19.
 REPEAT 1727 1733 20.
 REPEAT 1734 1740 21.
 REPEAT 1741 1747 22.
 REPEAT 1748 1754 23.
 REPEAT 1755 1761 24.
 REPEAT 1762 1768 25.
 REPEAT 1769 1775 26.
 REPEAT 1776 1782 27.
 REPEAT 1783 1789 28.
 REPEAT 1790 1796 29.
 REPEAT 1797 1803 30.
 REPEAT 1804 1810 31.
 REPEAT 1811 1817 32.
 REPEAT 1818 1824 33.
 REPEAT 1825 1831 34.
 REPEAT 1832 1838 35.
 REPEAT 1839 1845 36.
 REPEAT 1846 1852 37.
 REPEAT 1853 1859 38.
 REPEAT 1860 1866 39.
 REPEAT 1867 1873 40.
 REPEAT 1874 1880 41.
 REPEAT 1881 1887 42.
 REPEAT 1888 1894 43.
 REPEAT 1895 1901 44.
 REPEAT 1902 1908 45.
 REPEAT 1909 1915 46.
 REPEAT 1916 1922 47.
 REPEAT 1923 1929 48.
 REPEAT 1930 1936 49.
 REPEAT 1940 1946 50.
 REPEAT 1947 1953 51; approximate.
 REPEAT 1954 1960 52; approximate.
 REGION 833 845 Bridging helix.
 REGION 1593 1960 52 X 7 AA approximate tandem repeats of
 METAL 71 71 Zinc 1 (By similarity).
 METAL 74 74 Zinc 1 (By similarity).
 METAL 81 81 Zinc 1 (By similarity).
 METAL 84 84 Zinc 1 (By similarity).
 METAL 111 111 Zinc 2 (By similarity).
 METAL 114 114 Zinc 2 (By similarity).
 METAL 154 154 Zinc 2 (By similarity).
 METAL 184 184 Zinc 2 (By similarity).
 METAL 495 495 Magnesium 1; catalytic (By similarity).
 METAL 495 495 Magnesium 2; shared with RPB2 (By
 METAL 497 497 Magnesium 1; catalytic (By similarity).
 METAL 497 497 Magnesium 2; shared with RPB2 (By
 METAL 499 499 Magnesium 1; catalytic (By similarity).
 MOD_RES 1 1 N-acetylmethionine.
 MOD_RES 1810 1810 Omega-N-methylated arginine; by CARM1.
 MOD_RES 1843 1843 Phosphoserine.
 MOD_RES 1849 1849 Phosphoserine.
 MOD_RES 1854 1854 Phosphothreonine.
 MOD_RES 1874 1874 Phosphotyrosine.
 MOD_RES 1878 1878 Phosphoserine.
 MOD_RES 1882 1882 Phosphoserine.
 MOD_RES 1896 1896 Phosphoserine.
 MOD_RES 1899 1899 Phosphoserine.
 MOD_RES 1909 1909 Phosphotyrosine.
 MOD_RES 1913 1913 Phosphoserine.
 MOD_RES 1917 1917 Phosphoserine.
 MOD_RES 1920 1920 Phosphoserine.
 MOD_RES 1923 1923 Phosphotyrosine.
 MOD_RES 1927 1927 Phosphoserine.
 MOD_RES 1931 1931 Phosphoserine.
 MOD_RES 1933 1933 Phosphothreonine (By similarity).
 MOD_RES 1934 1934 Phosphoserine.  
Keyword
 3D-structure; Acetylation; Complete proteome; DNA-binding; DNA-directed RNA polymerase; Magnesium; Metal-binding; Methylation; Nucleotidyltransferase; Nucleus; Phosphoprotein; Polymorphism; Reference proteome; Repeat; RNA-directed RNA polymerase; Transcription; Transferase; Ubl conjugation; Zinc. 
Sequence Source
 UniProt (SWISSPROT/TrEMBL); GenBank; EMBL 
Protein Length
 1970 AA 
Protein Sequence
MHGGGPPSGD SACPLRTIKR VQFGVLSPDE LKRMSVTEGG IKYPETTEGG RPKLGGLMDP 60
RQGVIERTGR CQTCAGNMTE CPGHFGHIEL AKPVFHVGFL VKTMKVLRCV CFFCSKLLVD 120
SNNPKIKDIL AKSKGQPKKR LTHVYDLCKG KNICEGGEEM DNKFGVEQPE GDEDLTKEKG 180
HGGCGRYQPR IRRSGLELYA EWKHVNEDSQ EKKILLSPER VHEIFKRISD EECFVLGMEP 240
RYARPEWMIV TVLPVPPLSV RPAVVMQGSA RNQDDLTHKL ADIVKINNQL RRNEQNGAAA 300
HVIAEDVKLL QFHVATMVDN ELPGLPRAMQ KSGRPLKSLK QRLKGKEGRV RGNLMGKRVD 360
FSARTVITPD PNLSIDQVGV PRSIAANMTF AEIVTPFNID RLQELVRRGN SQYPGAKYII 420
RDNGDRIDLR FHPKPSDLHL QTGYKVERHM CDGDIVIFNR QPTLHKMSMM GHRVRILPWS 480
TFRLNLSVTT PYNADFDGDE MNLHLPQSLE TRAEIQELAM VPRMIVTPQS NRPVMGIVQD 540
TLTAVRKFTK RDVFLERGEV MNLLMFLSTW DGKVPQPAIL KPRPLWTGKQ IFSLIIPGHI 600
NCIRTHSTHP DDEDSGPYKH ISPGDTKVVV ENGELIMGIL CKKSLGTSAG SLVHISYLEM 660
GHDITRLFYS NIQTVINNWL LIEGHTIGIG DSIADSKTYQ DIQNTIKKAK QDVIEVIEKA 720
HNNELEPTPG NTLRQTFENQ VNRILNDARD KTGSSAQKSL SEYNNFKSMV VSGAKGSKIN 780
ISQVIAVVGQ QNVEGKRIPF GFKHRTLPHF IKDDYGPESR GFVENSYLAG LTPTEFFFHA 840
MGGREGLIDT AVKTAETGYI QRRLIKSMES VMVKYDATVR NSINQVVQLR YGEDGLAGES 900
VEFQNLATLK PSNKAFEKKF RFDYTNERAL RRTLQEDLVK DVLSNAHIQN ELEREFERMR 960
EDREVLRVIF PTGDSKVVLP CNLLRMIWNA QKIFHINPRL PSDLHPIKVV EGVKELSKKL 1020
VIVNGDDPLS RQAQENATLL FNIHLRSTLC SRRMAEEFRL SGEAFDWLLG EIESKFNQAI 1080
AHPGEMVGAL AAQSLGEPAT QMTLNTFHYA GVSAKNVTLG VPRLKELINI SKKPKTPSLT 1140
VFLLGQSARD AERAKDILCR LEHTTLRKVT ANTAIYYDPN PQSTVVAEDQ EWVNVYYEMP 1200
DFDVARISPW LLRVELDRKH MTDRKLTMEQ IAEKINAGFG DDLNCIFNDD NAEKLVLRIR 1260
IMNSDENKMQ EEEEVVDKMD DDVFLRCIES NMLTDMTLQG IEQISKVYMH LPQTDNKKKI 1320
IITEDGEFKA LQEWILETDG VSLMRVLSEK DVDPVRTTSN DIVEIFTVLG IEAVRKALER 1380
ELYHVISFDG SYVNYRHLAL LCDTMTCRGH LMAITRHGVN RQDTGPLMKC SFEETVDVLM 1440
EAAAHGESDP MKGVSENIML GQLAPAGTGC FDLLLDAEKC KYGMEIPTNI PGLGAAGPTG 1500
MFFGSAPSPM GGISPAMTPW NQGATPAYGA WSPSVGSGMT PGAAGFSPSA ASDASGFSPG 1560
YSPAWSPTPG SPGSPGPSSP YIPSPGGAMS PSYSPTSPAY EPRSPGGYTP QSPSYSPTSP 1620
SYSPTSPSYS PTSPNYSPTS PSYSPTSPSY SPTSPSYSPT SPSYSPTSPS YSPTSPSYSP 1680
TSPSYSPTSP SYSPTSPSYS PTSPSYSPTS PSYSPTSPSY SPTSPSYSPT SPSYSPTSPS 1740
YSPTSPNYSP TSPNYTPTSP SYSPTSPSYS PTSPNYTPTS PNYSPTSPSY SPTSPSYSPT 1800
SPSYSPSSPR YTPQSPTYTP SSPSYSPSSP SYSPASPKYT PTSPSYSPSS PEYTPTSPKY 1860
SPTSPKYSPT SPKYSPTSPT YSPTTPKYSP TSPTYSPTSP VYTPTSPKYS PTSPTYSPTS 1920
PKYSPTSPTY SPTSPKGSTY SPTSPGYSPT SPTYSLTSPA ISPDDSDEEN 1970 
Gene Ontology
 GO:0005665; C:DNA-directed RNA polymerase II, core complex; IDA:UniProtKB.
 GO:0003677; F:DNA binding; NAS:UniProtKB.
 GO:0003899; F:DNA-directed RNA polymerase activity; NAS:UniProtKB.
 GO:0046872; F:metal ion binding; IEA:UniProtKB-KW.
 GO:0003968; F:RNA-directed RNA polymerase activity; IEA:UniProtKB-KW.
 GO:0006370; P:7-methylguanosine mRNA capping; TAS:Reactome.
 GO:0000398; P:mRNA splicing, via spliceosome; TAS:Reactome.
 GO:0050434; P:positive regulation of viral transcription; TAS:Reactome.
 GO:0006355; P:regulation of transcription, DNA-dependent; NAS:UniProtKB.
 GO:0006368; P:transcription elongation from RNA polymerase II promoter; TAS:Reactome.
 GO:0006367; P:transcription initiation from RNA polymerase II promoter; TAS:Reactome.
 GO:0006283; P:transcription-coupled nucleotide-excision repair; TAS:Reactome.
 GO:0022415; P:viral reproductive process; TAS:Reactome. 
Interpro
 IPR009010; Asp_de-COase-like_dom.
 IPR000722; RNA_pol_asu.
 IPR000684; RNA_pol_II_repeat_euk.
 IPR006592; RNA_pol_N.
 IPR007080; RNA_pol_Rpb1_1.
 IPR007066; RNA_pol_Rpb1_3.
 IPR007083; RNA_pol_Rpb1_4.
 IPR007081; RNA_pol_Rpb1_5.
 IPR007075; RNA_pol_Rpb1_6.
 IPR007073; RNA_pol_Rpb1_7. 
Pfam
 PF04997; RNA_pol_Rpb1_1
 PF00623; RNA_pol_Rpb1_2
 PF04983; RNA_pol_Rpb1_3
 PF05000; RNA_pol_Rpb1_4
 PF04998; RNA_pol_Rpb1_5
 PF04992; RNA_pol_Rpb1_6
 PF04990; RNA_pol_Rpb1_7
 PF05001; RNA_pol_Rpb1_R 
SMART
 SM00663; RPOLA_N 
PROSITE
 PS00115; RNA_POL_II_REPEAT 
PRINTS