CPLM 1.0 - Compendium of Protein Lysine Modification
TagContent
CPLM ID CPLM-020803
UniProt Accession
Genbank Protein ID
Genbank Nucleotide ID
Protein Name
 ATP synthase subunit delta, mitochondrial 
Protein Synonyms/Alias
 F-ATPase delta subunit 
Gene Name
 Atp5d 
Gene Synonyms/Alias
  
Created Date
 July 27, 2013 
Organism
 Mus musculus (Mouse) 
NCBI Taxa ID
 10090 
Lysine Modification
Position
Peptide
Type
References
136AARANLEKAQSELSGacetylation[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
136AARANLEKAQSELSGsuccinylation[9]
136AARANLEKAQSELSGubiquitination[11, 12]
165EANEALVKALE****acetylation[1, 2, 3, 8, 9, 10]
165EANEALVKALE****succinylation[9]
Reference
 [1] The fasted/fed mouse metabolic acetylome: N6-acetylation differences suggest acetylation coordinates organ-specific fuel switching.
 Yang L, Vaitheesvaran B, Hartil K, Robinson AJ, Hoopmann MR, Eng JK, Kurland IJ, Bruce JE.
 J Proteome Res. 2011 Sep 2;10(9):4134-49. [PMID: 21728379]
 [2] Mitochondrial acetylome analysis in a mouse model of alcohol-induced liver injury utilizing SIRT3 knockout mice.
 Fritz KS, Galligan JJ, Hirschey MD, Verdin E, Petersen DR.
 J Proteome Res. 2012 Mar 2;11(3):1633-43. [PMID: 22309199]
 [3] Quantitative assessment of the impact of the gut microbiota on lysine epsilon-acetylation of host proteins using gnotobiotic mice.
 Simon GM, Cheng J, Gordon JI.
 Proc Natl Acad Sci U S A. 2012 Jul 10;109(28):11133-8. [PMID: 22733758]
 [4] Quantitative acetylome analysis reveals the roles of SIRT1 in regulating diverse substrates and cellular pathways.
 Chen Y, Zhao W, Yang JS, Cheng Z, Luo H, Lu Z, Tan M, Gu W, Zhao Y.
 Mol Cell Proteomics. 2012 Oct;11(10):1048-62. [PMID: 22826441]
 [5] Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome.
 Hebert AS, Dittenhafer-Reed KE, Yu W, Bailey DJ, Selen ES, Boersma MD, Carson JJ, Tonelli M, Balloon AJ, Higbee AJ, Westphall MS, Pagliarini DJ, Prolla TA, Assadi-Porter F, Roy S, Denu JM, Coon JJ.
 Mol Cell. 2013 Jan 10;49(1):186-99. [PMID: 23201123]
 [6] Proteomic investigations of lysine acetylation identify diverse substrates of mitochondrial deacetylase sirt3.
 Sol EM, Wagner SA, Weinert BT, Kumar A, Kim HS, Deng CX, Choudhary C.
 PLoS One. 2012;7(12):e50545. [PMID: 23236377]
 [7] Circadian acetylome reveals regulation of mitochondrial metabolic pathways.
 Masri S, Patel VR, Eckel-Mahan KL, Peleg S, Forne I, Ladurner AG, Baldi P, Imhof A, Sassone-Corsi P.
 Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):3339-44. [PMID: 23341599]
 [8] Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways.
 Rardin MJ, Newman JC, Held JM, Cusack MP, Sorensen DJ, Li B, Schilling B, Mooney SD, Kahn CR, Verdin E, Gibson BW.
 Proc Natl Acad Sci U S A. 2013 Apr 16;110(16):6601-6. [PMID: 23576753]
 [9] SIRT5-Mediated Lysine Desuccinylation Impacts Diverse Metabolic Pathways.
 Park J, Chen Y, Tishkoff DX, Peng C, Tan M, Dai L, Xie Z, Zhang Y, Zwaans BM, Skinner ME, Lombard DB, Zhao Y.
 Mol Cell. 2013 Jun 27;50(6):919-30. [PMID: 23806337]
 [10] Quantification of mitochondrial acetylation dynamics highlights prominent sites of metabolic regulation.
 Still AJ, Floyd BJ, Hebert AS, Bingman CA, Carson JJ, Gunderson DR, Dolan BK, Grimsrud PA, Dittenhafer-Reed KE, Stapleton DS, Keller MP, Westphall MS, Denu JM, Attie AD, Coon JJ, Pagliarini DJ.
 J Biol Chem. 2013 Jul 17;. [PMID: 23864654]
 [11] A proteomics approach to identify the ubiquitinated proteins in mouse heart.
 Jeon HB, Choi ES, Yoon JH, Hwang JH, Chang JW, Lee EK, Choi HW, Park ZY, Yoo YJ.
 Biochem Biophys Res Commun. 2007 Jun 8;357(3):731-6. [PMID: 17451654]
 [12] Proteomic analyses reveal divergent ubiquitylation site patterns in murine tissues.
 Wagner SA, Beli P, Weinert BT, Schölz C, Kelstrup CD, Young C, Nielsen ML, Olsen JV, Brakebusch C, Choudhary C.
 Mol Cell Proteomics. 2012 Dec;11(12):1578-85. [PMID: 22790023
Functional Description
 Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP turnover in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. Part of the complex F(1) domain and of the central stalk which is part of the complex rotary element. Rotation of the central stalk against the surrounding alpha(3)beta(3) subunits leads to hydrolysis of ATP in three separate catalytic sites on the beta subunits. 
Sequence Annotation
 CROSSLNK 136 136 Glycyl lysine isopeptide (Lys-Gly)  
Keyword
 ATP synthesis; CF(1); Complete proteome; Direct protein sequencing; Hydrogen ion transport; Ion transport; Isopeptide bond; Membrane; Mitochondrion; Mitochondrion inner membrane; Reference proteome; Transit peptide; Transport; Ubl conjugation. 
Sequence Source
 UniProt (SWISSPROT/TrEMBL); GenBank; EMBL 
Protein Length
 168 AA 
Protein Sequence
MLPASLLRHP GLRRLMLQAR TYAEAAAAPA PAAGPGQMSF TFASPTQVFF DSANVKQVDV 60
PTLTGAFGIL ASHVPTLQVL RPGLVVVHTE DGTTTKYFVS SGSVTVNADS SVQLLAEEAV 120
TLDMLDLGAA RANLEKAQSE LSGAADEAAR AEIQIRIEAN EALVKALE 168 
Gene Ontology
 GO:0005753; C:mitochondrial proton-transporting ATP synthase complex; ISS:UniProtKB.
 GO:0045261; C:proton-transporting ATP synthase complex, catalytic core F(1); IEA:UniProtKB-KW.
 GO:0046933; F:proton-transporting ATP synthase activity, rotational mechanism; IEA:InterPro.
 GO:0046961; F:proton-transporting ATPase activity, rotational mechanism; IEA:InterPro.
 GO:0006200; P:ATP catabolic process; IEA:GOC.
 GO:0015986; P:ATP synthesis coupled proton transport; IEA:InterPro. 
Interpro
 IPR001469; ATPase_F1-cplx_dsu/esu.
 IPR020547; ATPase_F1-cplx_dsu/esu_C.
 IPR020546; ATPase_F1-cplx_dsu/esu_N. 
Pfam
 PF02823; ATP-synt_DE_N 
SMART
  
PROSITE
  
PRINTS