[1] A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles.
Wagner SA, Beli P, Weinert BT, Nielsen ML, Cox J, Mann M, Choudhary C.
Mol Cell Proteomics. 2011 Oct;10(10):M111.013284. [
PMID: 21890473]
[2] Systematic and quantitative assessment of the ubiquitin-modified proteome.
Kim W, Bennett EJ, Huttlin EL, Guo A, Li J, Possemato A, Sowa ME, Rad R, Rush J, Comb MJ, Harper JW, Gygi SP.
Mol Cell. 2011 Oct 21;44(2):325-40. [
PMID: 21906983]
[3] Methods for quantification of in vivo changes in protein ubiquitination following proteasome and deubiquitinase inhibition.
Udeshi ND, Mani DR, Eisenhaure T, Mertins P, Jaffe JD, Clauser KR, Hacohen N, Carr SA.
Mol Cell Proteomics. 2012 May;11(5):148-59. [
PMID: 22505724]
[4] Systems-wide analysis of ubiquitylation dynamics reveals a key role for PAF15 ubiquitylation in DNA-damage bypass.
Povlsen LK, Beli P, Wagner SA, Poulsen SL, Sylvestersen KB, Poulsen JW, Nielsen ML, Bekker-Jensen S, Mailand N, Choudhary C.
Nat Cell Biol. 2012 Oct;14(10):1089-98. [
PMID: 23000965]
[5] Refined preparation and use of anti-diglycine remnant (K-ε-GG) antibody enables routine quantification of 10,000s of ubiquitination sites in single proteomics experiments.
Udeshi ND, Svinkina T, Mertins P, Kuhn E, Mani DR, Qiao JW, Carr SA.
Mol Cell Proteomics. 2013 Mar;12(3):825-31. [
PMID: 23266961]
[6] hCKSAAP_UbSite: improved prediction of human ubiquitination sites by exploiting amino acid pattern and properties.
Chen Z, Zhou Y, Song J, Zhang Z.
Biochim Biophys Acta. 2013 Aug;1834(8):1461-7. [
PMID: 23603789]