[1] A proteomic screen for nucleolar SUMO targets shows SUMOylation modulates the function of Nop5/Nop58.
Westman BJ, Verheggen C, Hutten S, Lam YW, Bertrand E, Lamond AI.
Mol Cell. 2010 Aug 27;39(4):618-31. [
PMID: 20797632]
[2] Site-specific identification of SUMO-2 targets in cells reveals an inverted SUMOylation motif and a hydrophobic cluster SUMOylation motif.
Matic I, Schimmel J, Hendriks IA, van Santen MA, van de Rijke F, van Dam H, Gnad F, Mann M, Vertegaal AC.
Mol Cell. 2010 Aug 27;39(4):641-52. [
PMID: 20797634]
[3] A role for SUMOylation in snoRNP biogenesis revealed by quantitative proteomics.
Westman BJ, Lamond AI.
Nucleus. 2011 Jan-Feb;2(1):30-7. [
PMID: 21647297]
[4] Targeted identification of SUMOylation sites in human proteins using affinity enrichment and paralog-specific reporter ions.
Lamoliatte F, Bonneil E, Durette C, Caron-Lizotte O, Wildemann D, Zerweck J, Wenschuh H, Thibault P.
Mol Cell Proteomics. 2013 Jun 7;. [
PMID: 23750026]
[5] Refined preparation and use of anti-diglycine remnant (K-ε-GG) antibody enables routine quantification of 10,000s of ubiquitination sites in single proteomics experiments.
Udeshi ND, Svinkina T, Mertins P, Kuhn E, Mani DR, Qiao JW, Carr SA.
Mol Cell Proteomics. 2013 Mar;12(3):825-31. [
PMID: 23266961]
[6] Mass spectrometry-based identification and characterisation of lysine and arginine methylation in the human proteome.
Bremang M, Cuomo A, Agresta AM, Stugiewicz M, Spadotto V, Bonaldi T.
Mol Biosyst. 2013 Jul 30;9(9):2231-47. [
PMID: 23748837]