CPLM 1.0 - Compendium of Protein Lysine Modification
TagContent
CPLM ID CPLM-003846
UniProt Accession
Genbank Protein ID
Genbank Nucleotide ID
Protein Name
 Histone H2B type 1-F/J/L 
Protein Synonyms/Alias
 H2B 291A 
Gene Name
 Hist1h2bf; Hist1h2bj; Hist1h2bl; Hist1h2bn 
Gene Synonyms/Alias
 H2b-f; H2b-j; H2b-l; H2b-n 
Created Date
 July 27, 2013 
Organism
 Mus musculus (Mouse) 
NCBI Taxa ID
 10090 
Lysine Modification
Position
Peptide
Type
References
6**MPEPAKSAPAPKKacetylation[1, 2, 3, 4, 5, 6]
6**MPEPAKSAPAPKKcrotonylation[7]
6**MPEPAKSAPAPKKsuccinylation[5]
6**MPEPAKSAPAPKKubiquitination[8]
12AKSAPAPKKGSKKAVacetylation[1, 5, 6, 9, 10]
12AKSAPAPKKGSKKAVcrotonylation[7]
13KSAPAPKKGSKKAVTacetylation[1, 9, 10, 11]
13KSAPAPKKGSKKAVTcrotonylation[7]
13KSAPAPKKGSKKAVTmethylation[1]
16PAPKKGSKKAVTKAQacetylation[1, 2, 3, 9, 10, 11]
16PAPKKGSKKAVTKAQcrotonylation[7]
17APKKGSKKAVTKAQKacetylation[1, 2, 3, 5, 9, 10, 11, 12]
17APKKGSKKAVTKAQKcrotonylation[7]
21GSKKAVTKAQKKDGKacetylation[1, 2, 3, 5, 6, 9, 10, 11, 12]
21GSKKAVTKAQKKDGKcrotonylation[7]
21GSKKAVTKAQKKDGKmethylation[1]
24KAVTKAQKKDGKKRKacetylation[2, 5, 6, 10]
24KAVTKAQKKDGKKRKcrotonylation[7]
25AVTKAQKKDGKKRKRacetylation[10]
35KKRKRSRKESYSVYVcrotonylation[7]
35KKRKRSRKESYSVYVmethylation[1]
35KKRKRSRKESYSVYVubiquitination[8]
44SYSVYVYKVLKQVHPubiquitination[8]
47VYVYKVLKQVHPDTGubiquitination[8]
58PDTGISSKAMGIMNSacetylation[1]
109LLPGELAKHAVSEGTacetylation[1, 2, 3, 4, 5, 6, 10, 12, 13]
109LLPGELAKHAVSEGTcrotonylation[1]
109LLPGELAKHAVSEGTsuccinylation[5]
109LLPGELAKHAVSEGTubiquitination[8]
117HAVSEGTKAVTKYTSacetylation[1, 5, 6]
117HAVSEGTKAVTKYTSsuccinylation[5]
117HAVSEGTKAVTKYTSubiquitination[8]
121EGTKAVTKYTSSK**acetylation[1, 2, 3, 5, 6, 10, 13]
121EGTKAVTKYTSSK**succinylation[5, 14]
121EGTKAVTKYTSSK**ubiquitination[8]
126VTKYTSSK*******acetylation[1]
Reference
 [1] Identification of combinatorial patterns of post-translational modifications on individual histones in the mouse brain.
 Tweedie-Cullen RY, Brunner AM, Grossmann J, Mohanna S, Sichau D, Nanni P, Panse C, Mansuy IM.
 PLoS One. 2012;7(5):e36980. [PMID: 22693562]
 [2] Quantitative assessment of the impact of the gut microbiota on lysine epsilon-acetylation of host proteins using gnotobiotic mice.
 Simon GM, Cheng J, Gordon JI.
 Proc Natl Acad Sci U S A. 2012 Jul 10;109(28):11133-8. [PMID: 22733758]
 [3] Quantitative acetylome analysis reveals the roles of SIRT1 in regulating diverse substrates and cellular pathways.
 Chen Y, Zhao W, Yang JS, Cheng Z, Luo H, Lu Z, Tan M, Gu W, Zhao Y.
 Mol Cell Proteomics. 2012 Oct;11(10):1048-62. [PMID: 22826441]
 [4] Circadian acetylome reveals regulation of mitochondrial metabolic pathways.
 Masri S, Patel VR, Eckel-Mahan KL, Peleg S, Forne I, Ladurner AG, Baldi P, Imhof A, Sassone-Corsi P.
 Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):3339-44. [PMID: 23341599]
 [5] SIRT5-Mediated Lysine Desuccinylation Impacts Diverse Metabolic Pathways.
 Park J, Chen Y, Tishkoff DX, Peng C, Tan M, Dai L, Xie Z, Zhang Y, Zwaans BM, Skinner ME, Lombard DB, Zhao Y.
 Mol Cell. 2013 Jun 27;50(6):919-30. [PMID: 23806337]
 [6] Quantification of mitochondrial acetylation dynamics highlights prominent sites of metabolic regulation.
 Still AJ, Floyd BJ, Hebert AS, Bingman CA, Carson JJ, Gunderson DR, Dolan BK, Grimsrud PA, Dittenhafer-Reed KE, Stapleton DS, Keller MP, Westphall MS, Denu JM, Attie AD, Coon JJ, Pagliarini DJ.
 J Biol Chem. 2013 Jul 17;. [PMID: 23864654]
 [7] Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification.
 Tan M, Luo H, Lee S, Jin F, Yang JS, Montellier E, Buchou T, Cheng Z, Rousseaux S, Rajagopal N, Lu Z, Ye Z, Zhu Q, Wysocka J, Ye Y, Khochbin S, Ren B, Zhao Y.
 Cell. 2011 Sep 16;146(6):1016-28. [PMID: 21925322]
 [8] Proteomic analyses reveal divergent ubiquitylation site patterns in murine tissues.
 Wagner SA, Beli P, Weinert BT, Schölz C, Kelstrup CD, Young C, Nielsen ML, Olsen JV, Brakebusch C, Choudhary C.
 Mol Cell Proteomics. 2012 Dec;11(12):1578-85. [PMID: 22790023]
 [9] Substrate and functional diversity of lysine acetylation revealed by a proteomics survey.
 Kim SC, Sprung R, Chen Y, Xu Y, Ball H, Pei J, Cheng T, Kho Y, Xiao H, Xiao L, Grishin NV, White M, Yang XJ, Zhao Y.
 Mol Cell. 2006 Aug;23(4):607-18. [PMID: 16916647]
 [10] Comprehensive mapping of post-translational modifications on synaptic, nuclear, and histone proteins in the adult mouse brain.
 Tweedie-Cullen RY, Reck JM, Mansuy IM.
 J Proteome Res. 2009 Nov;8(11):4966-82. [PMID: 19737024]
 [11] Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways.
 Rardin MJ, Newman JC, Held JM, Cusack MP, Sorensen DJ, Li B, Schilling B, Mooney SD, Kahn CR, Verdin E, Gibson BW.
 Proc Natl Acad Sci U S A. 2013 Apr 16;110(16):6601-6. [PMID: 23576753]
 [12] Proteomic investigations of lysine acetylation identify diverse substrates of mitochondrial deacetylase sirt3.
 Sol EM, Wagner SA, Weinert BT, Kumar A, Kim HS, Deng CX, Choudhary C.
 PLoS One. 2012;7(12):e50545. [PMID: 23236377]
 [13] The fasted/fed mouse metabolic acetylome: N6-acetylation differences suggest acetylation coordinates organ-specific fuel switching.
 Yang L, Vaitheesvaran B, Hartil K, Robinson AJ, Hoopmann MR, Eng JK, Kurland IJ, Bruce JE.
 J Proteome Res. 2011 Sep 2;10(9):4134-49. [PMID: 21728379]
 [14] Lysine succinylation and lysine malonylation in histones.
 Xie Z, Dai J, Dai L, Tan M, Cheng Z, Wu Y, Boeke JD, Zhao Y.
 Mol Cell Proteomics. 2012 May;11(5):100-7. [PMID: 22389435
Functional Description
 Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. 
Sequence Annotation
 MOD_RES 2 2 N-acetylproline (By similarity).
 MOD_RES 6 6 N6-acetyllysine; alternate (By
 MOD_RES 6 6 N6-crotonyl-L-lysine; alternate.
 MOD_RES 12 12 N6-acetyllysine; alternate.
 MOD_RES 12 12 N6-crotonyl-L-lysine; alternate.
 MOD_RES 13 13 N6-acetyllysine; alternate.
 MOD_RES 13 13 N6-crotonyl-L-lysine; alternate.
 MOD_RES 15 15 Phosphoserine; by STK4/MST1.
 MOD_RES 16 16 N6-acetyllysine; alternate.
 MOD_RES 16 16 N6-crotonyl-L-lysine; alternate.
 MOD_RES 17 17 N6-acetyllysine; alternate.
 MOD_RES 17 17 N6-crotonyl-L-lysine; alternate.
 MOD_RES 21 21 N6-acetyllysine; alternate.
 MOD_RES 21 21 N6-crotonyl-L-lysine; alternate.
 MOD_RES 24 24 N6-acetyllysine; alternate (By
 MOD_RES 24 24 N6-crotonyl-L-lysine; alternate.
 MOD_RES 35 35 N6-crotonyl-L-lysine; alternate.
 MOD_RES 37 37 Phosphoserine; by AMPK.
 MOD_RES 43 43 Phosphotyrosine (By similarity).
 MOD_RES 47 47 N6-methyllysine (By similarity).
 MOD_RES 58 58 N6,N6-dimethyllysine (By similarity).
 MOD_RES 109 109 N6-methyllysine (By similarity).
 MOD_RES 113 113 Phosphoserine; alternate (By similarity).
 CARBOHYD 113 113 O-linked (GlcNAc...); alternate (By
 CROSSLNK 35 35 Glycyl lysine isopeptide (Lys-Gly)
 CROSSLNK 121 121 Glycyl lysine isopeptide (Lys-Gly)  
Keyword
 Acetylation; Chromosome; Complete proteome; DNA-binding; Glycoprotein; Isopeptide bond; Methylation; Nucleosome core; Nucleus; Phosphoprotein; Reference proteome; Ubl conjugation. 
Sequence Source
 UniProt (SWISSPROT/TrEMBL); GenBank; EMBL 
Protein Length
 126 AA 
Protein Sequence
MPEPAKSAPA PKKGSKKAVT KAQKKDGKKR KRSRKESYSV YVYKVLKQVH PDTGISSKAM 60
GIMNSFVNDI FERIASEASR LAHYNKRSTI TSREIQTAVR LLLPGELAKH AVSEGTKAVT 120
KYTSSK 126 
Gene Ontology
 GO:0000786; C:nucleosome; IEA:UniProtKB-KW.
 GO:0005634; C:nucleus; IEA:UniProtKB-SubCell.
 GO:0003677; F:DNA binding; IEA:UniProtKB-KW.
 GO:0006334; P:nucleosome assembly; IEA:InterPro. 
Interpro
 IPR009072; Histone-fold.
 IPR007125; Histone_core_D.
 IPR000558; Histone_H2B. 
Pfam
 PF00125; Histone 
SMART
 SM00427; H2B 
PROSITE
 PS00357; HISTONE_H2B 
PRINTS
 PR00621; HISTONEH2B.