CPLM 1.0 - Compendium of Protein Lysine Modification
TagContent
CPLM ID CPLM-018272
UniProt Accession
Genbank Protein ID
Genbank Nucleotide ID
Protein Name
 Programmed cell death 6-interacting protein 
Protein Synonyms/Alias
 PDCD6-interacting protein; ALG-2-interacting protein 1; ALG-2-interacting protein X; Hp95 
Gene Name
 PDCD6IP 
Gene Synonyms/Alias
 AIP1; ALIX; KIAA1375 
Created Date
 July 27, 2013 
Organism
 Homo sapiens (Human) 
NCBI Taxa ID
 9606 
Lysine Modification
Position
Peptide
Type
References
19TSEVDLAKPLVKFIQubiquitination[1, 2, 3, 4, 5]
23DLAKPLVKFIQQTYPubiquitination[1, 3, 5, 6]
48RAAEELSKLRRAAVGacetylation[7]
48RAAEELSKLRRAAVGubiquitination[3]
60AVGRPLDKHEGALETubiquitination[3]
101TWKDAFDKGSLFGGSacetylation[8]
101TWKDAFDKGSLFGGSubiquitination[1, 3, 9, 10]
215MKDAIIAKLANQAADacetylation[7]
215MKDAIIAKLANQAADubiquitination[2]
229DYFGDAFKQCQYKDTubiquitination[3]
234AFKQCQYKDTLPKEVubiquitination[3]
298YDEYVNVKDFSDKINacetylation[8]
303NVKDFSDKINRALAAubiquitination[2]
313RALAAAKKDNDFIYHubiquitination[10]
334KDLDPIGKATLVKSTubiquitination[3]
339IGKATLVKSTPVNVPacetylation[8]
339IGKATLVKSTPVNVPubiquitination[3]
350VNVPISQKFTDLFEKacetylation[8]
350VNVPISQKFTDLFEKubiquitination[1, 3, 5, 6, 10]
357KFTDLFEKMVPVSVQubiquitination[2, 3, 4]
486TPSNELYKPLRAEGTacetylation[8]
486TPSNELYKPLRAEGTubiquitination[6]
501NFRTVLDKAVQADGQubiquitination[1, 2, 3, 4, 5, 6, 10, 11]
541IPSANPAKTMQGSEVubiquitination[3]
564SNLDEVKKEREGLENubiquitination[3]
638VSHQEFSKMKQSNNEubiquitination[2, 3, 4, 10, 12]
640HQEFSKMKQSNNEANubiquitination[2, 3, 4, 10, 13, 14]
675ANLKEGTKFYNELTEubiquitination[4]
707TERDELLKDLQQSIAubiquitination[1, 2, 3, 4, 5, 6, 11, 15, 16]
751PRTMPPTKPQPPARPubiquitination[1, 5, 6]
Reference
 [1] A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles.
 Wagner SA, Beli P, Weinert BT, Nielsen ML, Cox J, Mann M, Choudhary C.
 Mol Cell Proteomics. 2011 Oct;10(10):M111.013284. [PMID: 21890473]
 [2] Systematic and quantitative assessment of the ubiquitin-modified proteome.
 Kim W, Bennett EJ, Huttlin EL, Guo A, Li J, Possemato A, Sowa ME, Rad R, Rush J, Comb MJ, Harper JW, Gygi SP.
 Mol Cell. 2011 Oct 21;44(2):325-40. [PMID: 21906983]
 [3] Refined preparation and use of anti-diglycine remnant (K-ε-GG) antibody enables routine quantification of 10,000s of ubiquitination sites in single proteomics experiments.
 Udeshi ND, Svinkina T, Mertins P, Kuhn E, Mani DR, Qiao JW, Carr SA.
 Mol Cell Proteomics. 2013 Mar;12(3):825-31. [PMID: 23266961]
 [4] Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization.
 Sarraf SA, Raman M, Guarani-Pereira V, Sowa ME, Huttlin EL, Gygi SP, Harper JW.
 Nature. 2013 Apr 18;496(7445):372-6. [PMID: 23503661]
 [5] hCKSAAP_UbSite: improved prediction of human ubiquitination sites by exploiting amino acid pattern and properties.
 Chen Z, Zhou Y, Song J, Zhang Z.
 Biochim Biophys Acta. 2013 Aug;1834(8):1461-7. [PMID: 23603789]
 [6] Systems-wide analysis of ubiquitylation dynamics reveals a key role for PAF15 ubiquitylation in DNA-damage bypass.
 Povlsen LK, Beli P, Wagner SA, Poulsen SL, Sylvestersen KB, Poulsen JW, Nielsen ML, Bekker-Jensen S, Mailand N, Choudhary C.
 Nat Cell Biol. 2012 Oct;14(10):1089-98. [PMID: 23000965]
 [7] Lysine acetylation targets protein complexes and co-regulates major cellular functions.
 Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M.
 Science. 2009 Aug 14;325(5942):834-40. [PMID: 19608861]
 [8] Proteomic investigations of lysine acetylation identify diverse substrates of mitochondrial deacetylase sirt3.
 Sol EM, Wagner SA, Weinert BT, Kumar A, Kim HS, Deng CX, Choudhary C.
 PLoS One. 2012;7(12):e50545. [PMID: 23236377]
 [9] Proteomic analyses reveal divergent ubiquitylation site patterns in murine tissues.
 Wagner SA, Beli P, Weinert BT, Schölz C, Kelstrup CD, Young C, Nielsen ML, Olsen JV, Brakebusch C, Choudhary C.
 Mol Cell Proteomics. 2012 Dec;11(12):1578-85. [PMID: 22790023]
 [10] Integrated proteomic analysis of post-translational modifications by serial enrichment.
 Mertins P, Qiao JW, Patel J, Udeshi ND, Clauser KR, Mani DR, Burgess MW, Gillette MA, Jaffe JD, Carr SA.
 Nat Methods. 2013 Jul;10(7):634-7. [PMID: 23749302]
 [11] Proteome-wide identification of ubiquitylation sites by conjugation of engineered lysine-less ubiquitin.
 Oshikawa K, Matsumoto M, Oyamada K, Nakayama KI.
 J Proteome Res. 2012 Feb 3;11(2):796-807. [PMID: 22053931]
 [12] Global identification of modular cullin-RING ligase substrates.
 Emanuele MJ, Elia AE, Xu Q, Thoma CR, Izhar L, Leng Y, Guo A, Chen YN, Rush J, Hsu PW, Yen HC, Elledge SJ.
 Cell. 2011 Oct 14;147(2):459-74. [PMID: 21963094]
 [13] Ubiquitin ligase substrate identification through quantitative proteomics at both the protein and peptide levels.
 Lee KA, Hammerle LP, Andrews PS, Stokes MP, Mustelin T, Silva JC, Black RA, Doedens JR.
 J Biol Chem. 2011 Dec 2;286(48):41530-8. [PMID: 21987572]
 [14] Methods for quantification of in vivo changes in protein ubiquitination following proteasome and deubiquitinase inhibition.
 Udeshi ND, Mani DR, Eisenhaure T, Mertins P, Jaffe JD, Clauser KR, Hacohen N, Carr SA.
 Mol Cell Proteomics. 2012 May;11(5):148-59. [PMID: 22505724]
 [15] Global analysis of lysine ubiquitination by ubiquitin remnant immunoaffinity profiling.
 Xu G, Paige JS, Jaffrey SR.
 Nat Biotechnol. 2010 Aug;28(8):868-73. [PMID: 20639865]
 [16] Mass spectrometric analysis of lysine ubiquitylation reveals promiscuity at site level.
 Danielsen JM, Sylvestersen KB, Bekker-Jensen S, Szklarczyk D, Poulsen JW, Horn H, Jensen LJ, Mailand N, Nielsen ML.
 Mol Cell Proteomics. 2011 Mar;10(3):M110.003590. [PMID: 21139048
Functional Description
 Class E VPS protein involved in concentration and sorting of cargo proteins of the multivesicular body (MVB) for incorporation into intralumenal vesicles (ILVs) that are generated by invagination and scission from the limiting membrane of the endosome. Binds to the phospholipid lysobisphosphatidic acid (LBPA) which is abundant in MVBs internal membranes. The MVB pathway appears to require the sequential function of ESCRT-O, -I,-II and -III complexes. The ESCRT machinery also functions in topologically equivalent membrane fission events, such as the terminal stages of cytokinesis and enveloped virus budding (HIV-1 and other lentiviruses). Appears to be an adapter for a subset of ESCRT-III proteins, such as CHMP4, to function at distinct membranes. Required for completion of cytokinesis. Involved in HIV-1 virus budding. Can replace TSG101 it its role of supporting HIV-1 release; this function implies the interaction with CHMP4B. May play a role in the regulation of both apoptosis and cell proliferation. 
Sequence Annotation
 DOMAIN 3 392 BRO1.
 REGION 176 868 Interaction with EIAV p9.
 REGION 176 503 Interaction with CHMP4A, CHMP4B and
 REGION 503 868 Self-association.
 REGION 717 720 Interaction with TSG101.
 REGION 797 806 Interaction with CEP55.
 REGION 864 868 Essential to promote virus budding.
 MOD_RES 2 2 N-acetylalanine.
 MOD_RES 215 215 N6-acetyllysine.
 MOD_RES 730 730 Phosphoserine.
 MOD_RES 738 738 Phosphothreonine.
 MOD_RES 741 741 Phosphothreonine.  
Keyword
 3D-structure; Acetylation; Alternative splicing; Apoptosis; Cell cycle; Cell division; Complete proteome; Cytoplasm; Cytoskeleton; Direct protein sequencing; Host-virus interaction; Phosphoprotein; Polymorphism; Protein transport; Reference proteome; Transport. 
Sequence Source
 UniProt (SWISSPROT/TrEMBL); GenBank; EMBL 
Protein Length
 868 AA 
Protein Sequence
MATFISVQLK KTSEVDLAKP LVKFIQQTYP SGGEEQAQYC RAAEELSKLR RAAVGRPLDK 60
HEGALETLLR YYDQICSIEP KFPFSENQIC LTFTWKDAFD KGSLFGGSVK LALASLGYEK 120
SCVLFNCAAL ASQIAAEQNL DNDEGLKIAA KHYQFASGAF LHIKETVLSA LSREPTVDIS 180
PDTVGTLSLI MLAQAQEVFF LKATRDKMKD AIIAKLANQA ADYFGDAFKQ CQYKDTLPKE 240
VFPVLAAKHC IMQANAEYHQ SILAKQQKKF GEEIARLQHA AELIKTVASR YDEYVNVKDF 300
SDKINRALAA AKKDNDFIYH DRVPDLKDLD PIGKATLVKS TPVNVPISQK FTDLFEKMVP 360
VSVQQSLAAY NQRKADLVNR SIAQMREATT LANGVLASLN LPAAIEDVSG DTVPQSILTK 420
SRSVIEQGGI QTVDQLIKEL PELLQRNREI LDESLRLLDE EEATDNDLRA KFKERWQRTP 480
SNELYKPLRA EGTNFRTVLD KAVQADGQVK ECYQSHRDTI VLLCKPEPEL NAAIPSANPA 540
KTMQGSEVVN VLKSLLSNLD EVKKEREGLE NDLKSVNFDM TSKFLTALAQ DGVINEEALS 600
VTELDRVYGG LTTKVQESLK KQEGLLKNIQ VSHQEFSKMK QSNNEANLRE EVLKNLATAY 660
DNFVELVANL KEGTKFYNEL TEILVRFQNK CSDIVFARKT ERDELLKDLQ QSIAREPSAP 720
SIPTPAYQSS PAGGHAPTPP TPAPRTMPPT KPQPPARPPP PVLPANRAPS ATAPSPVGAG 780
TAAPAPSQTP GSAPPPQAQG PPYPTYPGYP GYCQMPMPMG YNPYAYGQYN MPYPPVYHQS 840
PGQAPYPGPQ QPSYPFPQPP QQSYYPQQ 868 
Gene Ontology
 GO:0005737; C:cytoplasm; IDA:HPA.
 GO:0005829; C:cytosol; IEA:UniProtKB-SubCell.
 GO:0042470; C:melanosome; IEA:UniProtKB-SubCell.
 GO:0005815; C:microtubule organizing center; IEA:UniProtKB-SubCell.
 GO:0006915; P:apoptotic process; IEA:UniProtKB-KW.
 GO:0007049; P:cell cycle; IEA:UniProtKB-KW.
 GO:0051301; P:cell division; IEA:UniProtKB-KW.
 GO:0015031; P:protein transport; IEA:UniProtKB-KW.
 GO:0019048; P:virus-host interaction; IEA:UniProtKB-KW. 
Interpro
 IPR025304; ALIX_V_dom.
 IPR004328; BRO1_dom. 
Pfam
 PF13949; ALIX_LYPXL_bnd
 PF03097; BRO1 
SMART
 SM01041; BRO1 
PROSITE
 PS51180; BRO1 
PRINTS