CPLM 1.0 - Compendium of Protein Lysine Modification
TagContent
CPLM ID CPLM-006041
UniProt Accession
Genbank Protein ID
Genbank Nucleotide ID
Protein Name
 Non-specific lipid-transfer protein 
Protein Synonyms/Alias
 NSL-TP; Propanoyl-CoA C-acyltransferase; SCP-chi; SCPX; Sterol carrier protein 2; SCP-2; Sterol carrier protein X; SCP-X 
Gene Name
 Scp2 
Gene Synonyms/Alias
 Scp-2 
Created Date
 July 27, 2013 
Organism
 Mus musculus (Mouse) 
NCBI Taxa ID
 10090 
Lysine Modification
Position
Peptide
Type
References
7*MPSVALKSPRLRRVubiquitination[1]
23VVGVGMTKFMKPGGEubiquitination[1]
26VGMTKFMKPGGENSRacetylation[2]
26VGMTKFMKPGGENSRubiquitination[1]
40RDYPDMAKEAGQKALacetylation[2]
40RDYPDMAKEAGQKALubiquitination[1]
132ERGSIGTKFSDRTTPacetylation[2]
132ERGSIGTKFSDRTTPubiquitination[1]
142DRTTPTDKHIEVLIDacetylation[2, 3]
142DRTTPTDKHIEVLIDubiquitination[1]
150HIEVLIDKYGLSAHPubiquitination[1]
168QMFGYAGKEHMEKYGubiquitination[1]
173AGKEHMEKYGTKVEHacetylation[2, 3]
173AGKEHMEKYGTKVEHubiquitination[1]
177HMEKYGTKVEHFAKIacetylation[2]
177HMEKYGTKVEHFAKIubiquitination[1]
183TKVEHFAKIGWKNHKacetylation[2]
183TKVEHFAKIGWKNHKubiquitination[1]
190KIGWKNHKHSVNNTYubiquitination[1]
211YSLEEVMKSKPVFDFubiquitination[1]
274FEEKSIIKVVGYDMSacetylation[4, 5]
274FEEKSIIKVVGYDMSsuccinylation[5]
274FEEKSIIKVVGYDMSubiquitination[1]
282VVGYDMSKEAARRCYacetylation[2, 3, 4, 5, 6, 7]
282VVGYDMSKEAARRCYsuccinylation[5]
282VVGYDMSKEAARRCYubiquitination[1]
341GDNTYGGKWVINPSGacetylation[3, 4, 5]
341GDNTYGGKWVINPSGsuccinylation[5]
341GDNTYGGKWVINPSGubiquitination[1]
353PSGGLISKGHPLGATacetylation[7]
432SSAGDGFKANLVFKEacetylation[4, 5, 7]
432SSAGDGFKANLVFKEsuccinylation[5]
432SSAGDGFKANLVFKEubiquitination[1]
438FKANLVFKEIEKKLEacetylation[4, 5, 6, 7, 8, 9, 10]
438FKANLVFKEIEKKLEsuccinylation[5]
443VFKEIEKKLEEEGEQacetylation[4, 5, 9, 10]
443VFKEIEKKLEEEGEQsuccinylation[5]
443VFKEIEKKLEEEGEQubiquitination[1]
453EEGEQFVKKIGGIFAacetylation[3, 4, 5, 6, 7, 8, 9, 10, 11]
453EEGEQFVKKIGGIFAsuccinylation[5]
453EEGEQFVKKIGGIFAubiquitination[1, 12]
454EGEQFVKKIGGIFAFacetylation[4, 5]
454EGEQFVKKIGGIFAFsuccinylation[5]
454EGEQFVKKIGGIFAFubiquitination[1, 12]
462IGGIFAFKVKDGPGGacetylation[4, 5, 7, 8]
462IGGIFAFKVKDGPGGsuccinylation[5]
462IGGIFAFKVKDGPGGubiquitination[12]
464GIFAFKVKDGPGGKEacetylation[4, 5, 7]
464GIFAFKVKDGPGGKEsuccinylation[5]
470VKDGPGGKEATWVVDacetylation[4, 5, 7, 8, 9]
470VKDGPGGKEATWVVDsuccinylation[5]
470VKDGPGGKEATWVVDubiquitination[1]
479ATWVVDVKNGKGSVLacetylation[4, 5, 7]
479ATWVVDVKNGKGSVLsuccinylation[5]
479ATWVVDVKNGKGSVLubiquitination[1]
491SVLPNSDKKADCTITacetylation[4, 5, 7]
491SVLPNSDKKADCTITsuccinylation[5]
492VLPNSDKKADCTITMacetylation[5, 9]
492VLPNSDKKADCTITMsuccinylation[5]
511LLALMTGKMNPQSAFacetylation[5, 9]
511LLALMTGKMNPQSAFsuccinylation[5]
522QSAFFQGKLKIAGNMacetylation[5, 7, 8, 9]
522QSAFFQGKLKIAGNMsuccinylation[5]
522QSAFFQGKLKIAGNMubiquitination[1]
524AFFQGKLKIAGNMGLacetylation[5, 7]
524AFFQGKLKIAGNMGLsuccinylation[5]
524AFFQGKLKIAGNMGLubiquitination[1]
534GNMGLAMKLQNLQLQacetylation[5]
534GNMGLAMKLQNLQLQsuccinylation[5]
534GNMGLAMKLQNLQLQubiquitination[1]
544NLQLQPGKAKL****acetylation[5]
544NLQLQPGKAKL****succinylation[5]
544NLQLQPGKAKL****ubiquitination[1]
546QLQPGKAKL******ubiquitination[1]
Reference
 [1] Proteomic analyses reveal divergent ubiquitylation site patterns in murine tissues.
 Wagner SA, Beli P, Weinert BT, Schölz C, Kelstrup CD, Young C, Nielsen ML, Olsen JV, Brakebusch C, Choudhary C.
 Mol Cell Proteomics. 2012 Dec;11(12):1578-85. [PMID: 22790023]
 [2] Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome.
 Hebert AS, Dittenhafer-Reed KE, Yu W, Bailey DJ, Selen ES, Boersma MD, Carson JJ, Tonelli M, Balloon AJ, Higbee AJ, Westphall MS, Pagliarini DJ, Prolla TA, Assadi-Porter F, Roy S, Denu JM, Coon JJ.
 Mol Cell. 2013 Jan 10;49(1):186-99. [PMID: 23201123]
 [3] Substrate and functional diversity of lysine acetylation revealed by a proteomics survey.
 Kim SC, Sprung R, Chen Y, Xu Y, Ball H, Pei J, Cheng T, Kho Y, Xiao H, Xiao L, Grishin NV, White M, Yang XJ, Zhao Y.
 Mol Cell. 2006 Aug;23(4):607-18. [PMID: 16916647]
 [4] Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways.
 Rardin MJ, Newman JC, Held JM, Cusack MP, Sorensen DJ, Li B, Schilling B, Mooney SD, Kahn CR, Verdin E, Gibson BW.
 Proc Natl Acad Sci U S A. 2013 Apr 16;110(16):6601-6. [PMID: 23576753]
 [5] SIRT5-Mediated Lysine Desuccinylation Impacts Diverse Metabolic Pathways.
 Park J, Chen Y, Tishkoff DX, Peng C, Tan M, Dai L, Xie Z, Zhang Y, Zwaans BM, Skinner ME, Lombard DB, Zhao Y.
 Mol Cell. 2013 Jun 27;50(6):919-30. [PMID: 23806337]
 [6] Mitochondrial acetylome analysis in a mouse model of alcohol-induced liver injury utilizing SIRT3 knockout mice.
 Fritz KS, Galligan JJ, Hirschey MD, Verdin E, Petersen DR.
 J Proteome Res. 2012 Mar 2;11(3):1633-43. [PMID: 22309199]
 [7] Quantification of mitochondrial acetylation dynamics highlights prominent sites of metabolic regulation.
 Still AJ, Floyd BJ, Hebert AS, Bingman CA, Carson JJ, Gunderson DR, Dolan BK, Grimsrud PA, Dittenhafer-Reed KE, Stapleton DS, Keller MP, Westphall MS, Denu JM, Attie AD, Coon JJ, Pagliarini DJ.
 J Biol Chem. 2013 Jul 17;. [PMID: 23864654]
 [8] The fasted/fed mouse metabolic acetylome: N6-acetylation differences suggest acetylation coordinates organ-specific fuel switching.
 Yang L, Vaitheesvaran B, Hartil K, Robinson AJ, Hoopmann MR, Eng JK, Kurland IJ, Bruce JE.
 J Proteome Res. 2011 Sep 2;10(9):4134-49. [PMID: 21728379]
 [9] Quantitative assessment of the impact of the gut microbiota on lysine epsilon-acetylation of host proteins using gnotobiotic mice.
 Simon GM, Cheng J, Gordon JI.
 Proc Natl Acad Sci U S A. 2012 Jul 10;109(28):11133-8. [PMID: 22733758]
 [10] Quantitative acetylome analysis reveals the roles of SIRT1 in regulating diverse substrates and cellular pathways.
 Chen Y, Zhao W, Yang JS, Cheng Z, Luo H, Lu Z, Tan M, Gu W, Zhao Y.
 Mol Cell Proteomics. 2012 Oct;11(10):1048-62. [PMID: 22826441]
 [11] Circadian acetylome reveals regulation of mitochondrial metabolic pathways.
 Masri S, Patel VR, Eckel-Mahan KL, Peleg S, Forne I, Ladurner AG, Baldi P, Imhof A, Sassone-Corsi P.
 Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):3339-44. [PMID: 23341599]
 [12] BTB-ZF factors recruit the E3 ligase cullin 3 to regulate lymphoid effector programs.
 Mathew R, Seiler MP, Scanlon ST, Mao AP, Constantinides MG, Bertozzi-Villa C, Singer JD, Bendelac A.
 Nature. 2012 Nov 22;491(7425):618-21. [PMID: 23086144
Functional Description
 Mediates in vitro the transfer of all common phospholipids, cholesterol and gangliosides between membranes. May play a role in regulating steroidogenesis. 
Sequence Annotation
 DOMAIN 433 543 SCP2.
 MOTIF 545 547 Microbody targeting signal (Potential).
 MOD_RES 8 8 Phosphoserine.
 MOD_RES 142 142 N6-acetyllysine.
 MOD_RES 173 173 N6-acetyllysine.
 MOD_RES 183 183 N6-acetyllysine (By similarity).
 MOD_RES 282 282 N6-acetyllysine.
 MOD_RES 341 341 N6-acetyllysine.
 MOD_RES 425 425 Phosphoserine.
 MOD_RES 438 438 N6-acetyllysine (By similarity).
 MOD_RES 453 453 N6-acetyllysine.
 MOD_RES 470 470 N6-acetyllysine (By similarity).  
Keyword
 Acetylation; Acyltransferase; Alternative initiation; Complete proteome; Cytoplasm; Direct protein sequencing; Lipid transport; Lipid-binding; Mitochondrion; Peroxisome; Phosphoprotein; Reference proteome; Transferase; Transport. 
Sequence Source
 UniProt (SWISSPROT/TrEMBL); GenBank; EMBL 
Protein Length
 547 AA 
Protein Sequence
MPSVALKSPR LRRVFVVGVG MTKFMKPGGE NSRDYPDMAK EAGQKALEDA QIPYSAVEQA 60
CVGYVYGDST SGQRAIYHSL GLTGIPIINV NNNCSTGSTA LFMAHQLIQG GLANCVLALG 120
FEKMERGSIG TKFSDRTTPT DKHIEVLIDK YGLSAHPITP QMFGYAGKEH MEKYGTKVEH 180
FAKIGWKNHK HSVNNTYSQF QDEYSLEEVM KSKPVFDFLT ILQCCPTSDG AAAAILSSEE 240
FVQQYGLQSK AVEIVAQEMM TDLPSTFEEK SIIKVVGYDM SKEAARRCYE KSGLTPNDVD 300
VIELHDCFSV NELITYEALG LCPEGQGGTL VDRGDNTYGG KWVINPSGGL ISKGHPLGAT 360
GLAQCAELCW QLRGEAGKRQ VPGAKVALQH NLGLGGAVVV TLYRMGFPEA ASSFRTHQVS 420
AAPTSSAGDG FKANLVFKEI EKKLEEEGEQ FVKKIGGIFA FKVKDGPGGK EATWVVDVKN 480
GKGSVLPNSD KKADCTITMA DSDLLALMTG KMNPQSAFFQ GKLKIAGNMG LAMKLQNLQL 540
QPGKAKL 547 
Gene Ontology
 GO:0005739; C:mitochondrion; IDA:MGI.
 GO:0005634; C:nucleus; IEA:Compara.
 GO:0005777; C:peroxisome; TAS:MGI.
 GO:0043234; C:protein complex; IEA:Compara.
 GO:0015485; F:cholesterol binding; IEA:Compara.
 GO:0036042; F:long-chain fatty acyl-CoA binding; IEA:Compara.
 GO:0070538; F:oleic acid binding; IEA:Compara.
 GO:0008526; F:phosphatidylinositol transporter activity; IEA:Compara.
 GO:0033814; F:propanoyl-CoA C-acyltransferase activity; IEA:EC.
 GO:0050632; F:propionyl-CoA C2-trimethyltridecanoyltransferase activity; TAS:MGI.
 GO:0006637; P:acyl-CoA metabolic process; TAS:MGI.
 GO:0032959; P:inositol trisphosphate biosynthetic process; IEA:Compara.
 GO:1901373; P:lipid hydroperoxide transport; IEA:Compara.
 GO:0007031; P:peroxisome organization; IMP:MGI.
 GO:0032385; P:positive regulation of intracellular cholesterol transport; IEA:Compara.
 GO:0045940; P:positive regulation of steroid metabolic process; IEA:Compara.
 GO:0006701; P:progesterone biosynthetic process; IEA:Compara.
 GO:0072659; P:protein localization to plasma membrane; IEA:Compara. 
Interpro
 IPR003033; SCP2_sterol-bd_dom.
 IPR016039; Thiolase-like.
 IPR016038; Thiolase-like_subgr.
 IPR020615; Thiolase_acyl_enz_int_AS.
 IPR020617; Thiolase_C.
 IPR020613; Thiolase_CS.
 IPR020616; Thiolase_N. 
Pfam
 PF02036; SCP2
 PF02803; Thiolase_C
 PF00108; Thiolase_N 
SMART
  
PROSITE
 PS00098; THIOLASE_1
 PS00737; THIOLASE_2
 PS00099; THIOLASE_3 
PRINTS