CPLM 1.0 - Compendium of Protein Lysine Modification
TagContent
CPLM ID CPLM-021020
UniProt Accession
Genbank Protein ID
Genbank Nucleotide ID
Protein Name
 Electron transfer flavoprotein subunit beta 
Protein Synonyms/Alias
 Beta-ETF 
Gene Name
 Etfb 
Gene Synonyms/Alias
  
Created Date
 July 27, 2013 
Organism
 Mus musculus (Mouse) 
NCBI Taxa ID
 10090 
Lysine Modification
Position
Peptide
Type
References
19RVIDFAVKIRVKPDKacetylation[1, 2, 3, 4]
19RVIDFAVKIRVKPDKsuccinylation[3]
26KIRVKPDKSGVVTDGacetylation[4, 5]
35GVVTDGVKHSMNPFCacetylation[2, 3, 4, 5]
35GVVTDGVKHSMNPFCsuccinylation[3]
56AVRLKEKKLVKEIIAacetylation[1, 2, 5]
59LKEKKLVKEIIAVSCacetylation[2, 3, 4, 5, 6]
59LKEKKLVKEIIAVSCsuccinylation[3]
110QVARVLAKLAEKEKVacetylation[2, 3, 4, 5, 6, 7, 8]
110QVARVLAKLAEKEKVsuccinylation[3]
114VLAKLAEKEKVDLLFacetylation[2, 5]
116AKLAEKEKVDLLFLGacetylation[2, 3, 4, 5, 7, 9, 10]
116AKLAEKEKVDLLFLGsuccinylation[3]
116AKLAEKEKVDLLFLGubiquitination[11]
124VDLLFLGKQAIDDDCacetylation[4]
176GLETLRLKLPAVVTAacetylation[4, 5, 6]
176GLETLRLKLPAVVTAubiquitination[11]
200ATLPNIMKAKKKKIEacetylation[2]
202LPNIMKAKKKKIEVVacetylation[2]
203PNIMKAKKKKIEVVKacetylation[2]
204NIMKAKKKKIEVVKAacetylation[2]
205IMKAKKKKIEVVKAGacetylation[1]
210KKKIEVVKAGDLGVDacetylation[2, 3, 4, 5, 6]
210KKKIEVVKAGDLGVDsuccinylation[3]
210KKKIEVVKAGDLGVDubiquitination[11]
221LGVDLTSKVSVISVEacetylation[4]
238PQRSAGVKVETTEDLacetylation[2, 3, 5]
238PQRSAGVKVETTEDLsuccinylation[3]
238PQRSAGVKVETTEDLubiquitination[11]
248TTEDLVAKLKEVGRIacetylation[2, 3, 4, 5, 6, 8, 9, 10]
248TTEDLVAKLKEVGRIsuccinylation[3]
248TTEDLVAKLKEVGRIubiquitination[11]
250EDLVAKLKEVGRI**acetylation[2]
Reference
 [1] Quantitative acetylome analysis reveals the roles of SIRT1 in regulating diverse substrates and cellular pathways.
 Chen Y, Zhao W, Yang JS, Cheng Z, Luo H, Lu Z, Tan M, Gu W, Zhao Y.
 Mol Cell Proteomics. 2012 Oct;11(10):1048-62. [PMID: 22826441]
 [2] Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways.
 Rardin MJ, Newman JC, Held JM, Cusack MP, Sorensen DJ, Li B, Schilling B, Mooney SD, Kahn CR, Verdin E, Gibson BW.
 Proc Natl Acad Sci U S A. 2013 Apr 16;110(16):6601-6. [PMID: 23576753]
 [3] SIRT5-Mediated Lysine Desuccinylation Impacts Diverse Metabolic Pathways.
 Park J, Chen Y, Tishkoff DX, Peng C, Tan M, Dai L, Xie Z, Zhang Y, Zwaans BM, Skinner ME, Lombard DB, Zhao Y.
 Mol Cell. 2013 Jun 27;50(6):919-30. [PMID: 23806337]
 [4] Quantification of mitochondrial acetylation dynamics highlights prominent sites of metabolic regulation.
 Still AJ, Floyd BJ, Hebert AS, Bingman CA, Carson JJ, Gunderson DR, Dolan BK, Grimsrud PA, Dittenhafer-Reed KE, Stapleton DS, Keller MP, Westphall MS, Denu JM, Attie AD, Coon JJ, Pagliarini DJ.
 J Biol Chem. 2013 Jul 17;. [PMID: 23864654]
 [5] Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome.
 Hebert AS, Dittenhafer-Reed KE, Yu W, Bailey DJ, Selen ES, Boersma MD, Carson JJ, Tonelli M, Balloon AJ, Higbee AJ, Westphall MS, Pagliarini DJ, Prolla TA, Assadi-Porter F, Roy S, Denu JM, Coon JJ.
 Mol Cell. 2013 Jan 10;49(1):186-99. [PMID: 23201123]
 [6] Quantitative assessment of the impact of the gut microbiota on lysine epsilon-acetylation of host proteins using gnotobiotic mice.
 Simon GM, Cheng J, Gordon JI.
 Proc Natl Acad Sci U S A. 2012 Jul 10;109(28):11133-8. [PMID: 22733758]
 [7] The fasted/fed mouse metabolic acetylome: N6-acetylation differences suggest acetylation coordinates organ-specific fuel switching.
 Yang L, Vaitheesvaran B, Hartil K, Robinson AJ, Hoopmann MR, Eng JK, Kurland IJ, Bruce JE.
 J Proteome Res. 2011 Sep 2;10(9):4134-49. [PMID: 21728379]
 [8] Circadian acetylome reveals regulation of mitochondrial metabolic pathways.
 Masri S, Patel VR, Eckel-Mahan KL, Peleg S, Forne I, Ladurner AG, Baldi P, Imhof A, Sassone-Corsi P.
 Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):3339-44. [PMID: 23341599]
 [9] Mitochondrial acetylome analysis in a mouse model of alcohol-induced liver injury utilizing SIRT3 knockout mice.
 Fritz KS, Galligan JJ, Hirschey MD, Verdin E, Petersen DR.
 J Proteome Res. 2012 Mar 2;11(3):1633-43. [PMID: 22309199]
 [10] Proteomic investigations of lysine acetylation identify diverse substrates of mitochondrial deacetylase sirt3.
 Sol EM, Wagner SA, Weinert BT, Kumar A, Kim HS, Deng CX, Choudhary C.
 PLoS One. 2012;7(12):e50545. [PMID: 23236377]
 [11] Proteomic analyses reveal divergent ubiquitylation site patterns in murine tissues.
 Wagner SA, Beli P, Weinert BT, Schölz C, Kelstrup CD, Young C, Nielsen ML, Olsen JV, Brakebusch C, Choudhary C.
 Mol Cell Proteomics. 2012 Dec;11(12):1578-85. [PMID: 22790023
Functional Description
 The electron transfer flavoprotein serves as a specific electron acceptor for several dehydrogenases, including five acyl- CoA dehydrogenases, glutaryl-CoA and sarcosine dehydrogenase. It transfers the electrons to the main mitochondrial respiratory chain via ETF-ubiquinone oxidoreductase (ETF dehydrogenase) (By similarity). 
Sequence Annotation
 MOD_RES 2 2 N-acetylalanine.  
Keyword
 Acetylation; Complete proteome; Direct protein sequencing; Electron transport; FAD; Flavoprotein; Mitochondrion; Reference proteome; Transport. 
Sequence Source
 UniProt (SWISSPROT/TrEMBL); GenBank; EMBL 
Protein Length
 255 AA 
Protein Sequence
MAELRALVAV KRVIDFAVKI RVKPDKSGVV TDGVKHSMNP FCEIAVEEAV RLKEKKLVKE 60
IIAVSCGPSQ CQETIRTALA MGADRGIHVE IPGAQAESLG PLQVARVLAK LAEKEKVDLL 120
FLGKQAIDDD CNQTGQMTAG LLDWPQGTFA SQVTLEGDKV KVEREIDGGL ETLRLKLPAV 180
VTADLRLNEP RYATLPNIMK AKKKKIEVVK AGDLGVDLTS KVSVISVEEP PQRSAGVKVE 240
TTEDLVAKLK EVGRI 255 
Gene Ontology
 GO:0017133; C:mitochondrial electron transfer flavoprotein complex; TAS:MGI.
 GO:0009055; F:electron carrier activity; TAS:MGI.
 GO:0022900; P:electron transport chain; IEA:UniProtKB-KW. 
Interpro
 IPR000049; ET-Flavoprotein_bsu_CS.
 IPR014730; ETF_a/b_N.
 IPR012255; ETF_b.
 IPR014729; Rossmann-like_a/b/a_fold. 
Pfam
 PF01012; ETF 
SMART
 SM00893; ETF 
PROSITE
 PS01065; ETF_BETA 
PRINTS