CPLM 1.0 - Compendium of Protein Lysine Modification
TagContent
CPLM ID CPLM-016534
UniProt Accession
Genbank Protein ID
Genbank Nucleotide ID
Protein Name
 Trifunctional enzyme subunit alpha, mitochondrial 
Protein Synonyms/Alias
 TP-alpha; Long-chain enoyl-CoA hydratase; Long chain 3-hydroxyacyl-CoA dehydrogenase 
Gene Name
 Hadha 
Gene Synonyms/Alias
  
Created Date
 July 27, 2013 
Organism
 Mus musculus (Mouse) 
NCBI Taxa ID
 10090 
Lysine Modification
Position
Peptide
Type
References
46THINYGVKGDVAVIRacetylation[1, 2, 3, 4]
46THINYGVKGDVAVIRsuccinylation[3]
46THINYGVKGDVAVIRubiquitination[5]
60RINSPNSKVNTLNKEacetylation[1, 2, 3, 4, 6]
60RINSPNSKVNTLNKEsuccinylation[3]
60RINSPNSKVNTLNKEubiquitination[5]
66SKVNTLNKEVQSEFIacetylation[6]
129EGQRMFEKLEKSPKPacetylation[1, 2, 3, 4, 7, 8]
129EGQRMFEKLEKSPKPsuccinylation[3]
163CQYRIATKDRKTVLGacetylation[1, 4]
166RIATKDRKTVLGVPEacetylation[2, 3, 6]
166RIATKDRKTVLGVPEsuccinylation[3]
166RIATKDRKTVLGVPEubiquitination[5]
190GGTQRLPKMVGVPAAubiquitination[5]
213NIRADRAKKMGLVDQacetylation[2, 3]
213NIRADRAKKMGLVDQsuccinylation[3]
214IRADRAKKMGLVDQLacetylation[2, 3, 6]
214IRADRAKKMGLVDQLphosphoglycerylation[9]
214IRADRAKKMGLVDQLsuccinylation[3]
214IRADRAKKMGLVDQLsuccinylation[3]
214IRADRAKKMGLVDQLubiquitination[5]
230EPLGPGIKSPEERTIacetylation[1, 2, 3]
230EPLGPGIKSPEERTIsuccinylation[3]
249EVAVNFAKGLADRKVacetylation[2, 3]
249EVAVNFAKGLADRKVsuccinylation[3]
267QSKGLVEKLTTYAMTacetylation[2]
289VYKTVEEKVKKQTKGacetylation[1, 2, 4, 10]
291KTVEEKVKKQTKGLYacetylation[1, 2]
295EKVKKQTKGLYPAPLacetylation[1, 2, 3, 4]
295EKVKKQTKGLYPAPLsuccinylation[3]
295EKVKKQTKGLYPAPLubiquitination[5]
303GLYPAPLKIIDAVKAacetylation[1, 2, 3, 4, 6, 11]
303GLYPAPLKIIDAVKAsuccinylation[3]
303GLYPAPLKIIDAVKAubiquitination[5]
309LKIIDAVKAGLEQGSacetylation[2]
309LKIIDAVKAGLEQGSubiquitination[5]
326GYLAESQKFGELALTacetylation[1, 2, 3, 4, 6, 7, 8, 12, 13]
326GYLAESQKFGELALTsuccinylation[3]
326GYLAESQKFGELALTubiquitination[5]
334FGELALTKESKALMGacetylation[1, 2, 3]
334FGELALTKESKALMGsuccinylation[3]
337LALTKESKALMGLYNacetylation[1, 4]
350YNGQVLCKKNKFGAPacetylation[1, 2, 3, 4, 6, 7, 12]
350YNGQVLCKKNKFGAPsuccinylation[3]
350YNGQVLCKKNKFGAPubiquitination[5]
351NGQVLCKKNKFGAPQacetylation[1]
353QVLCKKNKFGAPQKNacetylation[1, 2, 3, 4, 6]
353QVLCKKNKFGAPQKNsuccinylation[3]
386VSVDKGLKTLLKDTTacetylation[1, 2, 4]
390KGLKTLLKDTTVTGLacetylation[1, 3, 4, 6]
390KGLKTLLKDTTVTGLsuccinylation[3]
390KGLKTLLKDTTVTGLubiquitination[5]
406RGQQQVFKGLNDKVKacetylation[1, 2, 3, 4, 6, 8, 10, 11, 12, 13]
406RGQQQVFKGLNDKVKsuccinylation[3]
406RGQQQVFKGLNDKVKsuccinylation[3]
406RGQQQVFKGLNDKVKubiquitination[5]
411VFKGLNDKVKKKALTacetylation[1, 2, 3, 4, 10]
411VFKGLNDKVKKKALTsuccinylation[3]
411VFKGLNDKVKKKALTsuccinylation[3]
413KGLNDKVKKKALTSFacetylation[1, 2, 4, 10]
414GLNDKVKKKALTSFEacetylation[1, 2, 3]
414GLNDKVKKKALTSFEsuccinylation[3]
415LNDKVKKKALTSFERacetylation[2, 3]
415LNDKVKKKALTSFERsuccinylation[3]
415LNDKVKKKALTSFERsuccinylation[3]
415LNDKVKKKALTSFERubiquitination[5]
436LIGQLDYKGFEKADMacetylation[1, 2, 3, 4, 6, 8, 10]
436LIGQLDYKGFEKADMsuccinylation[3]
440LDYKGFEKADMVIEAacetylation[3]
440LDYKGFEKADMVIEAsuccinylation[3]
455VFEDLGVKHKVLKEVubiquitination[5]
457EDLGVKHKVLKEVESacetylation[1]
460GVKHKVLKEVESVTPacetylation[1, 2, 3, 4, 6, 11]
460GVKHKVLKEVESVTPsuccinylation[3]
493AVSKRPEKVIGMHYFacetylation[1]
505HYFSPVDKMQLLEIIacetylation[1, 2, 3, 4, 6, 13]
505HYFSPVDKMQLLEIIsuccinylation[3]
516LEIITTDKTSKDTTAacetylation[1, 3, 4]
516LEIITTDKTSKDTTAsuccinylation[3]
519ITTDKTSKDTTASAVacetylation[1, 2, 3, 4, 6]
519ITTDKTSKDTTASAVsuccinylation[3]
519ITTDKTSKDTTASAVubiquitination[5]
540GKVIIVVKDGPGFYTacetylation[1, 2, 4, 6, 11]
540GKVIIVVKDGPGFYTubiquitination[5]
569LQEGVDPKKLDALTTacetylation[1, 2, 3, 4, 6, 7]
569LQEGVDPKKLDALTTsuccinylation[3]
569LQEGVDPKKLDALTTubiquitination[5]
570QEGVDPKKLDALTTGacetylation[6]
620GGSVELLKQMVSKGFacetylation[1, 2, 3, 10]
620GGSVELLKQMVSKGFsuccinylation[3]
620GGSVELLKQMVSKGFubiquitination[5]
625LLKQMVSKGFLGRKSacetylation[1, 2]
634FLGRKSGKGFYIYQEacetylation[1, 2, 3]
634FLGRKSGKGFYIYQEsuccinylation[3]
644YIYQEGSKNKSLNSEacetylation[1, 2, 3, 4, 6, 12]
644YIYQEGSKNKSLNSEsuccinylation[3]
644YIYQEGSKNKSLNSEubiquitination[5]
646YQEGSKNKSLNSEMDacetylation[3]
646YQEGSKNKSLNSEMDsuccinylation[3]
646YQEGSKNKSLNSEMDubiquitination[5]
664ANLRLPAKPEVSSDEacetylation[1, 2, 3, 4, 6]
664ANLRLPAKPEVSSDEsuccinylation[3]
664ANLRLPAKPEVSSDEubiquitination[5]
728VDLYGAQKVVDRLRKacetylation[1, 2, 3, 4, 6, 7, 10, 11, 12]
728VDLYGAQKVVDRLRKsuccinylation[3]
728VDLYGAQKVVDRLRKubiquitination[5]
735KVVDRLRKYESAYGTacetylation[2, 11]
735KVVDRLRKYESAYGTubiquitination[5]
759DHANNSSKKFYQ***acetylation[1, 2, 3, 4]
759DHANNSSKKFYQ***succinylation[3]
759DHANNSSKKFYQ***ubiquitination[5]
Reference
 [1] Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome.
 Hebert AS, Dittenhafer-Reed KE, Yu W, Bailey DJ, Selen ES, Boersma MD, Carson JJ, Tonelli M, Balloon AJ, Higbee AJ, Westphall MS, Pagliarini DJ, Prolla TA, Assadi-Porter F, Roy S, Denu JM, Coon JJ.
 Mol Cell. 2013 Jan 10;49(1):186-99. [PMID: 23201123]
 [2] Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways.
 Rardin MJ, Newman JC, Held JM, Cusack MP, Sorensen DJ, Li B, Schilling B, Mooney SD, Kahn CR, Verdin E, Gibson BW.
 Proc Natl Acad Sci U S A. 2013 Apr 16;110(16):6601-6. [PMID: 23576753]
 [3] SIRT5-Mediated Lysine Desuccinylation Impacts Diverse Metabolic Pathways.
 Park J, Chen Y, Tishkoff DX, Peng C, Tan M, Dai L, Xie Z, Zhang Y, Zwaans BM, Skinner ME, Lombard DB, Zhao Y.
 Mol Cell. 2013 Jun 27;50(6):919-30. [PMID: 23806337]
 [4] Quantification of mitochondrial acetylation dynamics highlights prominent sites of metabolic regulation.
 Still AJ, Floyd BJ, Hebert AS, Bingman CA, Carson JJ, Gunderson DR, Dolan BK, Grimsrud PA, Dittenhafer-Reed KE, Stapleton DS, Keller MP, Westphall MS, Denu JM, Attie AD, Coon JJ, Pagliarini DJ.
 J Biol Chem. 2013 Jul 17;. [PMID: 23864654]
 [5] Proteomic analyses reveal divergent ubiquitylation site patterns in murine tissues.
 Wagner SA, Beli P, Weinert BT, Schölz C, Kelstrup CD, Young C, Nielsen ML, Olsen JV, Brakebusch C, Choudhary C.
 Mol Cell Proteomics. 2012 Dec;11(12):1578-85. [PMID: 22790023]
 [6] Quantitative assessment of the impact of the gut microbiota on lysine epsilon-acetylation of host proteins using gnotobiotic mice.
 Simon GM, Cheng J, Gordon JI.
 Proc Natl Acad Sci U S A. 2012 Jul 10;109(28):11133-8. [PMID: 22733758]
 [7] Substrate and functional diversity of lysine acetylation revealed by a proteomics survey.
 Kim SC, Sprung R, Chen Y, Xu Y, Ball H, Pei J, Cheng T, Kho Y, Xiao H, Xiao L, Grishin NV, White M, Yang XJ, Zhao Y.
 Mol Cell. 2006 Aug;23(4):607-18. [PMID: 16916647]
 [8] The fasted/fed mouse metabolic acetylome: N6-acetylation differences suggest acetylation coordinates organ-specific fuel switching.
 Yang L, Vaitheesvaran B, Hartil K, Robinson AJ, Hoopmann MR, Eng JK, Kurland IJ, Bruce JE.
 J Proteome Res. 2011 Sep 2;10(9):4134-49. [PMID: 21728379]
 [9] Functional lysine modification by an intrinsically reactive primary glycolytic metabolite.
 Moellering RE, Cravatt BF.
 Science. 2013 Aug 2;341(6145):549-53. [PMID: 23908237]
 [10] Mitochondrial acetylome analysis in a mouse model of alcohol-induced liver injury utilizing SIRT3 knockout mice.
 Fritz KS, Galligan JJ, Hirschey MD, Verdin E, Petersen DR.
 J Proteome Res. 2012 Mar 2;11(3):1633-43. [PMID: 22309199]
 [11] Quantitative acetylome analysis reveals the roles of SIRT1 in regulating diverse substrates and cellular pathways.
 Chen Y, Zhao W, Yang JS, Cheng Z, Luo H, Lu Z, Tan M, Gu W, Zhao Y.
 Mol Cell Proteomics. 2012 Oct;11(10):1048-62. [PMID: 22826441]
 [12] Proteomic investigations of lysine acetylation identify diverse substrates of mitochondrial deacetylase sirt3.
 Sol EM, Wagner SA, Weinert BT, Kumar A, Kim HS, Deng CX, Choudhary C.
 PLoS One. 2012;7(12):e50545. [PMID: 23236377]
 [13] Circadian acetylome reveals regulation of mitochondrial metabolic pathways.
 Masri S, Patel VR, Eckel-Mahan KL, Peleg S, Forne I, Ladurner AG, Baldi P, Imhof A, Sassone-Corsi P.
 Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):3339-44. [PMID: 23341599
Functional Description
 Bifunctional subunit. 
Sequence Annotation
 MOD_RES 129 129 N6-acetyllysine.
 MOD_RES 295 295 N6-acetyllysine (By similarity).
 MOD_RES 303 303 N6-acetyllysine (By similarity).
 MOD_RES 326 326 N6-acetyllysine.
 MOD_RES 350 350 N6-acetyllysine.
 MOD_RES 406 406 N6-acetyllysine (By similarity).
 MOD_RES 505 505 N6-acetyllysine (By similarity).
 MOD_RES 540 540 N6-acetyllysine (By similarity).
 MOD_RES 569 569 N6-acetyllysine.
 MOD_RES 644 644 N6-acetyllysine (By similarity).
 MOD_RES 728 728 N6-acetyllysine.  
Keyword
 Acetylation; Complete proteome; Fatty acid metabolism; Lipid metabolism; Lyase; Mitochondrion; Multifunctional enzyme; NAD; Oxidoreductase; Reference proteome; Transit peptide. 
Sequence Source
 UniProt (SWISSPROT/TrEMBL); GenBank; EMBL 
Protein Length
 763 AA 
Protein Sequence
MVASRAIGSL SRFSAFRILR SRGCICRSFT TSSALLTRTH INYGVKGDVA VIRINSPNSK 60
VNTLNKEVQS EFIEVMNEIW ANDQIRSAVL ISSKPGCFVA GADINMLSSC TTPQEATRIS 120
QEGQRMFEKL EKSPKPVVAA ISGSCLGGGL ELAIACQYRI ATKDRKTVLG VPEVLLGILP 180
GAGGTQRLPK MVGVPAAFDM MLTGRNIRAD RAKKMGLVDQ LVEPLGPGIK SPEERTIEYL 240
EEVAVNFAKG LADRKVSAKQ SKGLVEKLTT YAMTVPFVRQ QVYKTVEEKV KKQTKGLYPA 300
PLKIIDAVKA GLEQGSDAGY LAESQKFGEL ALTKESKALM GLYNGQVLCK KNKFGAPQKN 360
VQQLAILGAG LMGAGIAQVS VDKGLKTLLK DTTVTGLGRG QQQVFKGLND KVKKKALTSF 420
ERDSIFSNLI GQLDYKGFEK ADMVIEAVFE DLGVKHKVLK EVESVTPEHC IFASNTSALP 480
INQIAAVSKR PEKVIGMHYF SPVDKMQLLE IITTDKTSKD TTASAVAVGL RQGKVIIVVK 540
DGPGFYTTRC LAPMMSEVMR ILQEGVDPKK LDALTTGFGF PVGAATLADE VGVDVAQHVA 600
EDLGKAFGER FGGGSVELLK QMVSKGFLGR KSGKGFYIYQ EGSKNKSLNS EMDNILANLR 660
LPAKPEVSSD EDVQYRVITR FVNEAVLCLQ EGILATPAEG DIGAVFGLGF PPCLGGPFRF 720
VDLYGAQKVV DRLRKYESAY GTQFTPCQLL LDHANNSSKK FYQ 763 
Gene Ontology
 GO:0016507; C:mitochondrial fatty acid beta-oxidation multienzyme complex; IEA:Compara.
 GO:0005743; C:mitochondrial inner membrane; IDA:MGI.
 GO:0042645; C:mitochondrial nucleoid; IEA:Compara.
 GO:0005730; C:nucleolus; IEA:Compara.
 GO:0003857; F:3-hydroxyacyl-CoA dehydrogenase activity; IEA:Compara.
 GO:0003988; F:acetyl-CoA C-acyltransferase activity; IEA:Compara.
 GO:0004300; F:enoyl-CoA hydratase activity; TAS:MGI.
 GO:0000062; F:fatty-acyl-CoA binding; IEA:Compara.
 GO:0016509; F:long-chain-3-hydroxyacyl-CoA dehydrogenase activity; IDA:MGI.
 GO:0016508; F:long-chain-enoyl-CoA hydratase activity; IEA:Compara.
 GO:0051287; F:NAD binding; IEA:Compara.
 GO:0006635; P:fatty acid beta-oxidation; IMP:MGI.
 GO:0042493; P:response to drug; IEA:Compara.
 GO:0032868; P:response to insulin stimulus; IMP:MGI. 
Interpro
 IPR006180; 3-OHacyl-CoA_DH_CS.
 IPR006176; 3-OHacyl-CoA_DH_NAD-bd.
 IPR006108; 3HC_DH_C.
 IPR008927; 6-PGluconate_DH_C-like.
 IPR001753; Crotonase_core_superfam.
 IPR013328; DH_multihelical.
 IPR018376; Enoyl-CoA_hyd/isom_CS.
 IPR012803; Fa_ox_alpha_mit.
 IPR016040; NAD(P)-bd_dom. 
Pfam
 PF00725; 3HCDH
 PF02737; 3HCDH_N
 PF00378; ECH 
SMART
  
PROSITE
 PS00067; 3HCDH
 PS00166; ENOYL_COA_HYDRATASE 
PRINTS