CPLM 1.0 - Compendium of Protein Lysine Modification
TagContent
CPLM ID CPLM-002343
UniProt Accession
Genbank Protein ID
Genbank Nucleotide ID
Protein Name
 ATP synthase subunit beta, mitochondrial 
Protein Synonyms/Alias
  
Gene Name
 ATP5B 
Gene Synonyms/Alias
 ATPMB; ATPSB 
Created Date
 July 27, 2013 
Organism
 Homo sapiens (Human) 
NCBI Taxa ID
 9606 
Lysine Modification
Position
Peptide
Type
References
55AQTSPSPKAGAATGRubiquitination[1, 2, 3, 4]
124EGLVRGQKVLDSGAPubiquitination[1, 2, 3, 4, 5, 6]
133LDSGAPIKIPVGPETacetylation[7, 8]
133LDSGAPIKIPVGPETubiquitination[1, 2, 3, 4, 5, 6, 9, 10]
159IDERGPIKTKQFAPIubiquitination[2, 3, 4]
161ERGPIKTKQFAPIHAubiquitination[4]
198DLLAPYAKGGKIGLFacetylation[7]
198DLLAPYAKGGKIGLFubiquitination[1, 2, 4, 9]
201APYAKGGKIGLFGGAubiquitination[3, 4, 5, 6]
259ESGVINLKDATSKVAubiquitination[1, 2, 3, 4]
264NLKDATSKVALVYGQubiquitination[1, 3, 4]
351ERITTTKKGSITSVQubiquitination[3, 4]
426DVARGVQKILQDYKSacetylation[7]
426DVARGVQKILQDYKSubiquitination[1, 3, 4, 5, 6]
480VFTGHMGKLVPLKETubiquitination[3, 4]
485MGKLVPLKETIKGFQacetylation[7]
485MGKLVPLKETIKGFQubiquitination[3, 5, 6]
522EAVAKADKLAEEHSSacetylation[11]
Reference
 [1] Systematic and quantitative assessment of the ubiquitin-modified proteome.
 Kim W, Bennett EJ, Huttlin EL, Guo A, Li J, Possemato A, Sowa ME, Rad R, Rush J, Comb MJ, Harper JW, Gygi SP.
 Mol Cell. 2011 Oct 21;44(2):325-40. [PMID: 21906983]
 [2] Methods for quantification of in vivo changes in protein ubiquitination following proteasome and deubiquitinase inhibition.
 Udeshi ND, Mani DR, Eisenhaure T, Mertins P, Jaffe JD, Clauser KR, Hacohen N, Carr SA.
 Mol Cell Proteomics. 2012 May;11(5):148-59. [PMID: 22505724]
 [3] Refined preparation and use of anti-diglycine remnant (K-ε-GG) antibody enables routine quantification of 10,000s of ubiquitination sites in single proteomics experiments.
 Udeshi ND, Svinkina T, Mertins P, Kuhn E, Mani DR, Qiao JW, Carr SA.
 Mol Cell Proteomics. 2013 Mar;12(3):825-31. [PMID: 23266961]
 [4] Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization.
 Sarraf SA, Raman M, Guarani-Pereira V, Sowa ME, Huttlin EL, Gygi SP, Harper JW.
 Nature. 2013 Apr 18;496(7445):372-6. [PMID: 23503661]
 [5] A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles.
 Wagner SA, Beli P, Weinert BT, Nielsen ML, Cox J, Mann M, Choudhary C.
 Mol Cell Proteomics. 2011 Oct;10(10):M111.013284. [PMID: 21890473]
 [6] hCKSAAP_UbSite: improved prediction of human ubiquitination sites by exploiting amino acid pattern and properties.
 Chen Z, Zhou Y, Song J, Zhang Z.
 Biochim Biophys Acta. 2013 Aug;1834(8):1461-7. [PMID: 23603789]
 [7] Lysine acetylation targets protein complexes and co-regulates major cellular functions.
 Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M.
 Science. 2009 Aug 14;325(5942):834-40. [PMID: 19608861]
 [8] Regulation of cellular metabolism by protein lysine acetylation.
 Zhao S, Xu W, Jiang W, Yu W, Lin Y, Zhang T, Yao J, Zhou L, Zeng Y, Li H, Li Y, Shi J, An W, Hancock SM, He F, Qin L, Chin J, Yang P, Chen X, Lei Q, Xiong Y, Guan KL.
 Science. 2010 Feb 19;327(5968):1000-4. [PMID: 20167786]
 [9] Ubiquitin ligase substrate identification through quantitative proteomics at both the protein and peptide levels.
 Lee KA, Hammerle LP, Andrews PS, Stokes MP, Mustelin T, Silva JC, Black RA, Doedens JR.
 J Biol Chem. 2011 Dec 2;286(48):41530-8. [PMID: 21987572]
 [10] Systems-wide analysis of ubiquitylation dynamics reveals a key role for PAF15 ubiquitylation in DNA-damage bypass.
 Povlsen LK, Beli P, Wagner SA, Poulsen SL, Sylvestersen KB, Poulsen JW, Nielsen ML, Bekker-Jensen S, Mailand N, Choudhary C.
 Nat Cell Biol. 2012 Oct;14(10):1089-98. [PMID: 23000965]
 [11] Spermidine and resveratrol induce autophagy by distinct pathways converging on the acetylproteome.
 Morselli E, Mariño G, Bennetzen MV, Eisenberg T, Megalou E, Schroeder S, Cabrera S, Bénit P, Rustin P, Criollo A, Kepp O, Galluzzi L, Shen S, Malik SA, Maiuri MC, Horio Y, López-Otín C, Andersen JS, Tavernarakis N, Madeo F, Kroemer G.
 J Cell Biol. 2011 Feb 21;192(4):615-29. [PMID: 21339330
Functional Description
 Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. Subunits alpha and beta form the catalytic core in F(1). Rotation of the central stalk against the surrounding alpha(3)beta(3) subunits leads to hydrolysis of ATP in three separate catalytic sites on the beta subunits. 
Sequence Annotation
 NP_BIND 206 213 ATP (By similarity).
 MOD_RES 133 133 N6-acetyllysine.
 MOD_RES 198 198 N6-acetyllysine.
 MOD_RES 259 259 N6-acetyllysine (By similarity).
 MOD_RES 426 426 N6-acetyllysine.
 MOD_RES 522 522 N6-acetyllysine (By similarity).
 MOD_RES 529 529 Phosphoserine (By similarity).  
Keyword
 Acetylation; ATP synthesis; ATP-binding; CF(1); Complete proteome; Direct protein sequencing; Hydrogen ion transport; Hydrolase; Ion transport; Membrane; Mitochondrion; Mitochondrion inner membrane; Nucleotide-binding; Phosphoprotein; Polymorphism; Reference proteome; Transit peptide; Transport. 
Sequence Source
 UniProt (SWISSPROT/TrEMBL); GenBank; EMBL 
Protein Length
 529 AA 
Protein Sequence
MLGFVGRVAA APASGALRRL TPSASLPPAQ LLLRAAPTAV HPVRDYAAQT SPSPKAGAAT 60
GRIVAVIGAV VDVQFDEGLP PILNALEVQG RETRLVLEVA QHLGESTVRT IAMDGTEGLV 120
RGQKVLDSGA PIKIPVGPET LGRIMNVIGE PIDERGPIKT KQFAPIHAEA PEFMEMSVEQ 180
EILVTGIKVV DLLAPYAKGG KIGLFGGAGV GKTVLIMELI NNVAKAHGGY SVFAGVGERT 240
REGNDLYHEM IESGVINLKD ATSKVALVYG QMNEPPGARA RVALTGLTVA EYFRDQEGQD 300
VLLFIDNIFR FTQAGSEVSA LLGRIPSAVG YQPTLATDMG TMQERITTTK KGSITSVQAI 360
YVPADDLTDP APATTFAHLD ATTVLSRAIA ELGIYPAVDP LDSTSRIMDP NIVGSEHYDV 420
ARGVQKILQD YKSLQDIIAI LGMDELSEED KLTVSRARKI QRFLSQPFQV AEVFTGHMGK 480
LVPLKETIKG FQQILAGEYD HLPEQAFYMV GPIEEAVAKA DKLAEEHSS 529 
Gene Ontology
 GO:0009986; C:cell surface; IDA:UniProtKB.
 GO:0042645; C:mitochondrial nucleoid; IDA:BHF-UCL.
 GO:0005754; C:mitochondrial proton-transporting ATP synthase, catalytic core; NAS:UniProtKB.
 GO:0005886; C:plasma membrane; IDA:UniProtKB.
 GO:0005524; F:ATP binding; IEA:UniProtKB-KW.
 GO:0042288; F:MHC class I protein binding; IDA:UniProtKB.
 GO:0046933; F:proton-transporting ATP synthase activity, rotational mechanism; IEA:InterPro.
 GO:0046961; F:proton-transporting ATPase activity, rotational mechanism; IMP:UniProtKB.
 GO:0001525; P:angiogenesis; IMP:UniProtKB.
 GO:0015991; P:ATP hydrolysis coupled proton transport; IEA:InterPro.
 GO:0006629; P:lipid metabolic process; IEA:Compara.
 GO:0042776; P:mitochondrial ATP synthesis coupled proton transport; IC:UniProtKB.
 GO:0006933; P:negative regulation of cell adhesion involved in substrate-bound cell migration; IEA:Compara.
 GO:0051453; P:regulation of intracellular pH; IMP:UniProtKB.
 GO:0022904; P:respiratory electron transport chain; TAS:Reactome. 
Interpro
 IPR003593; AAA+_ATPase.
 IPR020003; ATPase_a/bsu_AS.
 IPR004100; ATPase_a/bsu_N.
 IPR005722; ATPase_F1-cplx_bsu.
 IPR000793; ATPase_F1/V1/A1-cplx_a/bsu_C.
 IPR000194; ATPase_F1/V1/A1_a/bsu_nucl-bd.
 IPR024034; ATPase_F1_bsu/V1_C.
 IPR027417; P-loop_NTPase. 
Pfam
 PF00006; ATP-synt_ab
 PF00306; ATP-synt_ab_C
 PF02874; ATP-synt_ab_N 
SMART
 SM00382; AAA 
PROSITE
 PS00152; ATPASE_ALPHA_BETA 
PRINTS